Terroir 2010 banner
IVES 9 IVES Conference Series 9 Study of grape physiology and wine quality (cv. Merlot) in different identified terroirs of the canton Ticino (Switzerland)

Study of grape physiology and wine quality (cv. Merlot) in different identified terroirs of the canton Ticino (Switzerland)

Abstract

[English version below]

Une étude de la physiologie de la vigne (cv. Merlot) et de la qualité des vins a été réalisée au Tessin de 2006 à 2008. La méthodologie utilisée pour cette étude intégrait tous les paramètres qui définissent les terroirs: facteurs naturels (géologie, pédologie et climat), facteurs physiologiques de la vigne et qualité des vins qui sont les révélateurs de la valeur d’un terroir. Pour analyser les principaux facteurs explicatifs de la qualité des terroirs, deux réseaux d’observation ont été mis en place (un réseau élargi et un réseau restreint) Pendant trois saisons, les données suivantes ont été enregistrées et analysées sur le réseau élargie (41 parcelles): vigueur de la plante (surfaces foliaires, arrêt de croissance, poids des sarments), analyses foliaires, index chlorophyllien, composantes du rendement et qualité des raisins. Sur le réseau restreint (25 parcelles), ces données ont été complétées par des mesures de l’état hydrique de la plante (potentiel de base, δC13). Les raisins des 25 parcelles du réseau restreint ont été vinifiés séparément et les vins ont été caractérisés par analyse chimique et sensorielle. La vigueur de la vigne est un facteur clé de la qualité d’un terroir. Elle est directement liée au type de sol et à son réservoir hydrique. L’alimentation hydrique de la vigne est étroitement liée au réservoir hydrique des sols. Malgré le fait qu’aucun stress hydrique n’ait été enregistré durant les trois années d’étude, les réserves hydriques des sols ont influencé le poids des baies et leur teneur en sucre. L’analyse chimique des vins n’a pas pu démontrer des différences significatives liées aux types de sols ou aux réserves hydriques. Des différences significatives ont par contre été observées au niveau de l’analyse sensorielle.

A study of grape physiology on cv. Merlot and wine quality was realised in Ticino from 2006 to 2008. The methodology used during our study integrated the entire parameters which define the terroir: natural factors (geology, pedology and climate), grape physiology and wine quality that are the main revealers of the value of a given terroir. In order to understand the main factors explaining the terroir, two observation networks were set up (a large network and a narrow network). During three growing seasons the following data were recorded on the large network: vine vigour (leaf area, pruning weight, time of growth cessation), leaf mineral content, chlorophyll index, yield components and berry composition. On the narrow network, the precedent observations were complemented by data from the vine water status (pre-dawn leaf water potential and carbone isotope composition). The grapes from 25 locations of the narrow network were vinified independently. Wines were characterized then by chemical and sensory analyses. The vine vigour was a key factor influencing the quality of a given terroir. Even if we didn’t observe any water stress during the three seasons of the study, soil water holding capacity affected berry weight and sugar concentration. The chemical analysis didn’t show any significant difference among wines according to soil types and SWHC. Significant differences between wines were observed with the sensory analysis.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Cristina Monico (1,2), F. Murisier (2) , V. Zufferey (2)

(1) FEDERVITI
Via Gorelle, S. Antonino, Svizzera
(2) Station de recherche Agroscope Changins-Wädenswil ACW
CP 102, Nyon, Suisse

Contact the author

Keywords

Terroirs, sols, climat, écophysiologie, qualité des raisins, qualité des vins
Terroirs, soils, climate, ecophysiology, grape quality, wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.

Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Aims: The Barossa wine region in South Australia comprises six sub-regions and is renowned for its Shiraz wines. However, there is no comprehensive documentation of the distinctive sensory characteristics of wines from these sub-regions.

Distinctive flavour or taint? The case of smoky characters in wine

Forest fires in the vicinity of vineyards have significantly increased in the last decade and are a concern for grapegrowers and winemakers in many wine producing countries. The fires cause smoke drift throughout vineyards which cannot be avoided and may result in the production of wines described as ‘smoke tainted’. Such wines are characterized by undesirable sensory characters described as ‘smoky’, ‘burnt’, ‘ash’ aromas and flavours, and also may cause a lingering, unpleasant ashy aftertaste [1; 2].

New understanding on sulfites reactivity in wine

Sulfur dioxide is widely used during winemaking as an antioxidant and antimicrobial agent. Bisulfite (HSO3−), the predominant form of SO2 at wine pH, reacts with several wine components forming sulfonated adducts.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.