Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of soil type and changes in soil solution chemistry on vine growth parameters and grape and wine quality in a central coast California vineyard

Influence of soil type and changes in soil solution chemistry on vine growth parameters and grape and wine quality in a central coast California vineyard

Abstract

The objective of this study was to determine the influence of four soils with contrasting chemical and physical properties on vine growth parameters and wine chemistry in a Paso Robles, California Cabernet Sauvignon vineyard. The selected soils covered contiguous vineyard patches planted with the same cultivar, on its own roots. Furthermore, these vineyards contained vines of the same age that have received the same management practices. The soils belonged to the orders Alfisols, Mollisols and Vertisols. Soil heterogeneity in this vineyard was attributed to variability in soil parent material, originating from old Estrella River alluvial deposits, which ranged from cobbly and gravelly to fine-grained alluvium. Soil moisture was recorded throughout the growing season. Plant water potentials at pre-dawn and midday were monitored on vines growing at two sites per soil type. Vine growth parameters were recorded along with leaf and petiole sampling for tissue analysis. Nutrient balance in the soil solution was characterized at the onset, mid-point and harvest time during the growing season and analyzed in relation to growth parameters and fruit yield. Soil solution concentrations of macronutrients, such as K and NH4/NO3, were related to differences in soil pH, organic matter, and clay mineralogy. Petioles and blades were sampled at bloom, veraison and harvest to evaluate plant nutrient concentrations and the relationship to nutrient availability in the soil solution. Variability in soil physical and chemical properties determined cation exchange capacity and nutrient availability in the soil solution, and these properties were found to be related to vine vigor and differences in fruit yield and quality between soils.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jean-Jacques LAMBERT (1), Andrew McELRONE (1,2), Mark BATTANY (3), Randy DAHLGREN (4), and James A. WOLPERT (1,3)

(1) Department of Viticulture and Enology
(2) U.S. Department of Agriculture
(3) University of California Cooperative Extension
(4) Department of Land, Air and Water Resources, University of California, Davis, CA, USA

Contact the author

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed.

Evolution of astringency during the ripening of red grapes through the tribological astringency index

The phenolic composition of red grapes is one of the most important quality parameters.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Evaluation of the site index model for viticultural zoning

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande.