Terroir 2008 banner
IVES 9 IVES Conference Series 9 Influence of soil type and changes in soil solution chemistry on vine growth parameters and grape and wine quality in a central coast California vineyard

Influence of soil type and changes in soil solution chemistry on vine growth parameters and grape and wine quality in a central coast California vineyard

Abstract

The objective of this study was to determine the influence of four soils with contrasting chemical and physical properties on vine growth parameters and wine chemistry in a Paso Robles, California Cabernet Sauvignon vineyard. The selected soils covered contiguous vineyard patches planted with the same cultivar, on its own roots. Furthermore, these vineyards contained vines of the same age that have received the same management practices. The soils belonged to the orders Alfisols, Mollisols and Vertisols. Soil heterogeneity in this vineyard was attributed to variability in soil parent material, originating from old Estrella River alluvial deposits, which ranged from cobbly and gravelly to fine-grained alluvium. Soil moisture was recorded throughout the growing season. Plant water potentials at pre-dawn and midday were monitored on vines growing at two sites per soil type. Vine growth parameters were recorded along with leaf and petiole sampling for tissue analysis. Nutrient balance in the soil solution was characterized at the onset, mid-point and harvest time during the growing season and analyzed in relation to growth parameters and fruit yield. Soil solution concentrations of macronutrients, such as K and NH4/NO3, were related to differences in soil pH, organic matter, and clay mineralogy. Petioles and blades were sampled at bloom, veraison and harvest to evaluate plant nutrient concentrations and the relationship to nutrient availability in the soil solution. Variability in soil physical and chemical properties determined cation exchange capacity and nutrient availability in the soil solution, and these properties were found to be related to vine vigor and differences in fruit yield and quality between soils.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Jean-Jacques LAMBERT (1), Andrew McELRONE (1,2), Mark BATTANY (3), Randy DAHLGREN (4), and James A. WOLPERT (1,3)

(1) Department of Viticulture and Enology
(2) U.S. Department of Agriculture
(3) University of California Cooperative Extension
(4) Department of Land, Air and Water Resources, University of California, Davis, CA, USA

Contact the author

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

New genomic techniques for sustainable management of water stress and pathogen control

Context and purpose of the study. Climate changes pose the need to develop new grapevine varieties and rootstocks that are more tolerant to stress and diseases.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Effect of moderate wine consumption in animal models

In 1979, the so-called “french paradox” was proposed, that is, a correlation between wine consumption, a diet rich in saturated fats, and a low mortality from coronary heart disease. On the other hand, it has also been described that alcohol consumption has negative effects on aging and increases the risk of liver cirrhosis and cancer. However, both hypotheses are based on population studies that may present distortions due to multiple factors (geographic, diet, smoking, socioeconomic level, etc.).