Terroir 2008 banner
IVES 9 IVES Conference Series 9 The influence of tertiary and quaternary deposits on the viticultural potential of the terroirs to be found in Geneva, Switzerland

The influence of tertiary and quaternary deposits on the viticultural potential of the terroirs to be found in Geneva, Switzerland

Abstract

The 1365 ha of the Genevese vineyard are located at the south-western corner of the Swiss plateau, between 395m and 505 m altitude. The vineyard is spread on quaternary deposits left behind after the melting of glaciers (12000 years BP) and tertiary molassic rocks (Chattien, 24 Ma). A soil map on the scale of 1:7500 was produced from 850 auger probes and 90 soil profiles. Based on this map, 69 parcels of Gamaret and Gamay are used as indicators to study the meso-climate and to follow the vines’ development. Thirty-seven parcels are equipped with temperature sensors at the depths of 2, 10 and 50 cm.
The glacial deposits are either made up of basal tills, mostly compacted, or by lateral and frontal stony tills more or less compacted or by glacio-lacustral and fluviatil deposits which show a textural composition going from clay to coarse gravel. The tertiary rocks present a succession of mudstone and sandstone stratas. The presence of these different deposits means there is great spatial variability. The textural and spatial variability are therefore present in the soils which developed from these parent materials.
More than half of the soils (55%) are located on basal or lateral tills. The glacio-lacustres and the tertiary rocks are to be found under 21 and 26 % of the soils respectively. Seven percent is situated on molasse with shallow till deposit. The CALCOSOLS, BRUNISOLS and LUVISOLS cover 63, 21 and 8 % of the surface respectively. Their clay, calcite and stone content differs widely. The deposits also influence the soils’ thermal and hydrological properties. The soils with excess of water are mostly located on fine textural deposits like mudstone and glacio-lacustral clay and on compacted tills The available water content goes from 50 to 250 mm. The plant behaviour is being observed in an on-going study to better under stand the meso-climate of the vineyard.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BURGOS Stéphane, DAKHEL Nathalie and ALMENDROS Sébastien

Ecole d’ingénieurs de Changins, 1260 Nyon, Switzerland

Contact the author

Keywords

terroir, géologie, sols, climat, dépôts glaciaires

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

Phenolic extraction and mechanical properties of skins and seeds during maceration of four main italian red wine grape varieties

AIM: Red grape varieties are characterized by different phenolic contents (prominently tannins and anthocyanins) found in skins and seeds.

Phenolic composition and physicochemical analysis of wines made with the Syrah grape under double pruning in the Brazilian high-altitude Cerrado

This study explores the growing potential of vitiviniculture in Brazil’s Federal District, an emerging wine region marked by unique climatic conditions and innovative cultivation techniques.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).