Terroir 2008 banner
IVES 9 IVES Conference Series 9 The influence of tertiary and quaternary deposits on the viticultural potential of the terroirs to be found in Geneva, Switzerland

The influence of tertiary and quaternary deposits on the viticultural potential of the terroirs to be found in Geneva, Switzerland

Abstract

The 1365 ha of the Genevese vineyard are located at the south-western corner of the Swiss plateau, between 395m and 505 m altitude. The vineyard is spread on quaternary deposits left behind after the melting of glaciers (12000 years BP) and tertiary molassic rocks (Chattien, 24 Ma). A soil map on the scale of 1:7500 was produced from 850 auger probes and 90 soil profiles. Based on this map, 69 parcels of Gamaret and Gamay are used as indicators to study the meso-climate and to follow the vines’ development. Thirty-seven parcels are equipped with temperature sensors at the depths of 2, 10 and 50 cm.
The glacial deposits are either made up of basal tills, mostly compacted, or by lateral and frontal stony tills more or less compacted or by glacio-lacustral and fluviatil deposits which show a textural composition going from clay to coarse gravel. The tertiary rocks present a succession of mudstone and sandstone stratas. The presence of these different deposits means there is great spatial variability. The textural and spatial variability are therefore present in the soils which developed from these parent materials.
More than half of the soils (55%) are located on basal or lateral tills. The glacio-lacustres and the tertiary rocks are to be found under 21 and 26 % of the soils respectively. Seven percent is situated on molasse with shallow till deposit. The CALCOSOLS, BRUNISOLS and LUVISOLS cover 63, 21 and 8 % of the surface respectively. Their clay, calcite and stone content differs widely. The deposits also influence the soils’ thermal and hydrological properties. The soils with excess of water are mostly located on fine textural deposits like mudstone and glacio-lacustral clay and on compacted tills The available water content goes from 50 to 250 mm. The plant behaviour is being observed in an on-going study to better under stand the meso-climate of the vineyard.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

BURGOS Stéphane, DAKHEL Nathalie and ALMENDROS Sébastien

Ecole d’ingénieurs de Changins, 1260 Nyon, Switzerland

Contact the author

Keywords

terroir, géologie, sols, climat, dépôts glaciaires

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact.

Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

The typicality of a product can be characterized by properties of similarity in relation to a type, but also by the properties of distinction.

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.