Terroir 2008 banner
IVES 9 IVES Conference Series 9 Main viticultural soils in Castilla – La Mancha (Spain)

Main viticultural soils in Castilla – La Mancha (Spain)

Abstract

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soils chosen are very representative of vineyards areas in the region), the results obtained will be very useful in helping us to choose the right varieties, rootstock, cultivation techniques, canopy management, irrigation system, etc… In further studies this typology will help us in works of viticulture zonification in areas where this technique is improving now.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

AMORÓS ORTIZ-VILLAJOS J.A. (1); GARCÍA NAVARRO F.J. (1,2); SÁNCHEZ JIMÉNEZ C.J. (2); MÁRQUEZ CUBERO E. (1); BRAVO MARTÍN-CONSUEGRA S. (1); JIMÉNEZ BALLESTA R. (3)

1) Esc. Universitaria Ing. Tec. Agrícola. UCLM. Ronda de Calatrava Nº 7 130071 Ciudad Real
(2) Unidad de suelos. Instituto Tecn, Química y Medioambiental (ITQUIMA-UCLM) 
(3) Dt Geología y Geoquímica. Universidad Autónoma de Madrid

 

Contact the author

Keywords

Soil, climate, rootstock, variety 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Advances in the chemistry of rosé winemaking and ageing

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines.

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.