Terroir 2008 banner
IVES 9 IVES Conference Series 9 Main viticultural soils in Castilla – La Mancha (Spain)

Main viticultural soils in Castilla – La Mancha (Spain)

Abstract

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soils chosen are very representative of vineyards areas in the region), the results obtained will be very useful in helping us to choose the right varieties, rootstock, cultivation techniques, canopy management, irrigation system, etc… In further studies this typology will help us in works of viticulture zonification in areas where this technique is improving now.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

AMORÓS ORTIZ-VILLAJOS J.A. (1); GARCÍA NAVARRO F.J. (1,2); SÁNCHEZ JIMÉNEZ C.J. (2); MÁRQUEZ CUBERO E. (1); BRAVO MARTÍN-CONSUEGRA S. (1); JIMÉNEZ BALLESTA R. (3)

1) Esc. Universitaria Ing. Tec. Agrícola. UCLM. Ronda de Calatrava Nº 7 130071 Ciudad Real
(2) Unidad de suelos. Instituto Tecn, Química y Medioambiental (ITQUIMA-UCLM) 
(3) Dt Geología y Geoquímica. Universidad Autónoma de Madrid

 

Contact the author

Keywords

Soil, climate, rootstock, variety 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Genomics and phenomics of root system architecture in grapevine

Adapting viticulture to climate change is crucial, as it presents significant challenges for future grape production.

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions