Terroir 2008 banner
IVES 9 IVES Conference Series 9 Main viticultural soils in Castilla – La Mancha (Spain)

Main viticultural soils in Castilla – La Mancha (Spain)

Abstract

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soils chosen are very representative of vineyards areas in the region), the results obtained will be very useful in helping us to choose the right varieties, rootstock, cultivation techniques, canopy management, irrigation system, etc… In further studies this typology will help us in works of viticulture zonification in areas where this technique is improving now.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

AMORÓS ORTIZ-VILLAJOS J.A. (1); GARCÍA NAVARRO F.J. (1,2); SÁNCHEZ JIMÉNEZ C.J. (2); MÁRQUEZ CUBERO E. (1); BRAVO MARTÍN-CONSUEGRA S. (1); JIMÉNEZ BALLESTA R. (3)

1) Esc. Universitaria Ing. Tec. Agrícola. UCLM. Ronda de Calatrava Nº 7 130071 Ciudad Real
(2) Unidad de suelos. Instituto Tecn, Química y Medioambiental (ITQUIMA-UCLM) 
(3) Dt Geología y Geoquímica. Universidad Autónoma de Madrid

 

Contact the author

Keywords

Soil, climate, rootstock, variety 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

[English version below]

On a étudié l’effet de l’orientation des rameaux sur les paramètres physiologiques, végétatifs et reproductif durant deux saisons de croissance (2002/2003 et 2003/2004) dans la région de Stellenbosch dans une vignoble du cépage Merlot sur 99R conduite en espalier et taillé à cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m.

Predictive Breeding: Impact of véraison (onset of ripening) on wine quality

Grapevine breeding focuses on high wine quality and climate-adapted grapevine varieties with fungal disease resistances to be cultivated in a pesticide-reduced and sustainable viticulture.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan.