Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rare earth elements in grapes and soil: study of different soil extraction methods

Rare earth elements in grapes and soil: study of different soil extraction methods

Abstract

Lanthanides, together with scandium and yttrium, make up the group of Rare Earth Elements (REEs). An official method for analysis of the bioavailable REEs accumulated by plants, depending mainly on soil characteristics, chemical speciation in soil and the specific ability of the plant, is still lacking.
In this study we analysed the content of 13 REEs (yttrium, Y; lanthanum, La; cerium, Ce; praseodymium, Pr; neodymium, Nd; samarium, Sm; europium Eu; gadolinium, Gd; dysprosium, Dy; holmium, Ho; erbium, Er; thulium, Tm; ytterbium, Yb) in Chardonnay grapes in relation to the content in the soil, extracted using different methods in order to assess which of the extractants used could best reflect the amount of elements taken up by the plant.
The vineyard, located in north-eastern Italy, is characterised by a silt loam, calcareous, alkaline soil. Four different extraction methods were tested: (1) aqua regia microwave digestion; (2) with DTPA, CaCl2 and TEA; (3) with ammonium acetate and (4) with ammonium nitrate.
The amount of REEs extracted followed the order: aqua regia > DTPA > CH3COONH4 > NH4NO3. Compared to the “so-called total” content in soil, the sum of the REEs extracted with DTPA, ammonium acetate and ammonium nitrate was roughly 0.80%, 0.065% and 0.002% and each individual element was extracted in amounts of <2.9%, <0.5% and <0.2% respectively. Only 7 elements (Y, La, Sm, Eu, Dy, Er, Tm) were found in quantifiable amounts after extraction with ammonium nitrate.
The concentration of individual REEs in berries would seem to correspond best to the concentrations extracted using aqua regia.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Daniela BERTOLDI (1,2),Roberto LARCHER (1),Giorgio NICOLINI (1),Massimo BERTAMINI (1), Giuseppe CONCHERI (2)

(1) IASMA Research Centre. Via E.Mach, 1. 38010 San Michele all’Adige (TN) Italy
(2) Agricultural Biotechnology Department, University of Padova. Viale dell’Università, 16. 35020 Legnaro (PD) Italy

Contact the author

Keywords

Rare Earth Elements, berries, soil, soil extraction, ICP-MS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a
territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural
environment and the action of the human, which modulates the territory to give the different wine
landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

Second pruning as a strategy to delay maturation in cv. ‘Touriga nacional’ in the Portuguese Douro region

The advance in maturation of wine grapes is an important climate change risk related effect that could affect warm regions like Portuguese Douro Wine Region. Indeed, the climate analysis over the past years registered a decrease in the precipitation, significant higher average temperatures, and a more frequent occurrence of extreme weather events, including heat waves. In these conditions the length from anthesis until maturation is shortened and the uncoupling of technical and phenolic maturity results in berries with higher sugar concentration (and lower acidity), but lower anthocyanins, tannins, and total phenolic concentration, which produce unbalanced wines.
In this work, an innovative strategy of crop forcing, based on forcing vine regrowth after a second pruning of green shoots, was tested, aimed at delaying ripening until the temperature becomes lower and, therefore, preventing acidity loss and increasing anthocyanin-to-sugar ratio. The experiments were conducted in 2019 and 2020 in a commercial vineyard of ‘Touriga Nacional’ located in the Douro Region. Crop forcing was conducted 15 (CF1) to 30 (CF2) days after fruit set. Vines pruned with conventional methods were used as control (CF0). Results confirmed that fruit ripening was shifted from the hot season (August/September), until a cooler period (October through early-November). At harvest, grapevine berries from CF1 and CF2 presented lower pH and higher acidity, than control, with no significant differences in colour intensity and phenolic levels composition. Sugar content was lower in CF2-treated vines in both seasons. However, in CF-treated vines the number and size of clusters were significantly lower (up to 88% reduction) than in control plants. A metabolomics analysis of mature berries from CF-treated vines and control is underway. Crop forcing was indeed effective in producing a more balance berry composition but severely reduced grapevine yield,

Vine selection in France: An assessment after more than 60 years of work

It was at the end of the second world war that professor Branas laid the foundations of french vine selection. He was also behind the creation of domaine de vassal (1949) and antav (1962), which were to become the bridgeheads of the french strategy for the conservation, selection and multiplication of viticultural diversity. Initially based on visually virus-symptom-free massal selections, with the main aim of providing healthy, clearly-identified plant material, the process evolved as knowledge gained towards clonal selection.

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].