Terroir 2008 banner
IVES 9 IVES Conference Series 9 Rare earth elements in grapes and soil: study of different soil extraction methods

Rare earth elements in grapes and soil: study of different soil extraction methods

Abstract

Lanthanides, together with scandium and yttrium, make up the group of Rare Earth Elements (REEs). An official method for analysis of the bioavailable REEs accumulated by plants, depending mainly on soil characteristics, chemical speciation in soil and the specific ability of the plant, is still lacking.
In this study we analysed the content of 13 REEs (yttrium, Y; lanthanum, La; cerium, Ce; praseodymium, Pr; neodymium, Nd; samarium, Sm; europium Eu; gadolinium, Gd; dysprosium, Dy; holmium, Ho; erbium, Er; thulium, Tm; ytterbium, Yb) in Chardonnay grapes in relation to the content in the soil, extracted using different methods in order to assess which of the extractants used could best reflect the amount of elements taken up by the plant.
The vineyard, located in north-eastern Italy, is characterised by a silt loam, calcareous, alkaline soil. Four different extraction methods were tested: (1) aqua regia microwave digestion; (2) with DTPA, CaCl2 and TEA; (3) with ammonium acetate and (4) with ammonium nitrate.
The amount of REEs extracted followed the order: aqua regia > DTPA > CH3COONH4 > NH4NO3. Compared to the “so-called total” content in soil, the sum of the REEs extracted with DTPA, ammonium acetate and ammonium nitrate was roughly 0.80%, 0.065% and 0.002% and each individual element was extracted in amounts of <2.9%, <0.5% and <0.2% respectively. Only 7 elements (Y, La, Sm, Eu, Dy, Er, Tm) were found in quantifiable amounts after extraction with ammonium nitrate.
The concentration of individual REEs in berries would seem to correspond best to the concentrations extracted using aqua regia.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Daniela BERTOLDI (1,2),Roberto LARCHER (1),Giorgio NICOLINI (1),Massimo BERTAMINI (1), Giuseppe CONCHERI (2)

(1) IASMA Research Centre. Via E.Mach, 1. 38010 San Michele all’Adige (TN) Italy
(2) Agricultural Biotechnology Department, University of Padova. Viale dell’Università, 16. 35020 Legnaro (PD) Italy

Contact the author

Keywords

Rare Earth Elements, berries, soil, soil extraction, ICP-MS

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

“Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

Il settore primario, ed in particolare quello agricolo, sta attraversando un periodo partico­larmente delicato. Sia gli aspetti della produzione che quelli della commercializzazione ven­gono infatti messi in discussione da nuovi indirizzi economici e tecnologici.

Influence of soil management and vine water regime on leaf gas exchange, berry composition and quality of Chasselas wines in Switzerland

A soil management and vine irrigation trial was carried out for 4 consecutive years from 2020 to 2023 at agroscope’s experimental vineyard in leytron (Valais, Switzerland) with the Chasselas grape variety (clone 14-33/4, grafted on 5bb). Two types of soil maintenance (bare soil with chemical weeding and sown grass) coupled with two water regimes (with and without drip irrigation from flowering to veraison) were compared in a randomized design with four replicates of 10 vines each.

“Un grande theatro di amenissimi colli”: “tutti coltivati et abondanti di frutti eccellentissimi e di buonissime viti”

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

ViniGWAS – improving the selection of climate-resilient grapevine varieties

Climate change and its consequences are becoming an increasing challenge for viticulture. The breeding of new grapevine varieties that are better adapted to the changing conditions offers a possible solution.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).