Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Climate influence on the grapevine phenology and anthocyanins content in wines from the Skopje vineyard area, Republic of Macedonia

Climate influence on the grapevine phenology and anthocyanins content in wines from the Skopje vineyard area, Republic of Macedonia

Abstract

The phenological stages and the content of the anthocyanins of non-irrigated cultivars Blatina, Vranec, Kratoshija, Prokupec and Stanushina were study. The cultivars are located in the Skopje vineyard area. The all examinated cultivars belong to the ecogeographical group of convarietas Pontica, subconvariates balcanica Negr.
The influence of climate was assessed with temperatures sum, sunshine hours and rainfall from the period 2001 to 2004.
The effect of climate and cultivar were found to be highly significant with regard to the vine behavior (phenological stages) and quality of the wine (content of anthocyanins).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

 Klime BELESKI (1), Zvonimir BOZINOVIC (2), Violeta DIMOVSKA (1), Srebra ILIC-POPOVA (2), Donka DONEVA-SAPCESKA (3)

(1) Institute of Agriculture, Aleksandar Makedonski bb, 1000 Skopje, Republic of Macedonia
(2) Faculty for Agricultural Sciences and Food, Aleksandar Makedonski bb, 1000 Skopje, Republic of Macedonia
(3) Faculty of Technology and Metallurgy, Rudger Boskovic 16, 1000 Skopje, Republic of Macedonia

Contact the author

Keywords

vitis vinifera, climate, phenology, anthocyanins

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Sustainable strategies for the management and valorization of wine lees

Wine lees represent an abundant yet largely undervalorised by-product of the winemaking industry.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.