Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Abstract

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages. The grapes were from five vineyards at different altitudes (774, 960, 1160, 1350 and 1415 m above sea level). Samples were analyzed for total soluble solids (TSS), titratable acidity (TA), Maturation Indices (TSS/TA and TSS x pH2), pH, total anthocyanins, total polyphenol index (TPI) and berry weight at 10-day intervals from véraison to harvest. Glories parameters were evaluated at maturity. Regression analysis and principal components analysis (PCA) were used to relate harvest data (berry composition at maturity and phenological events: budbreak, floraison and véraison) as a function of mesoclimate and vineyard altitude.
For the vintages studied, titratable acidities ranged from 0.59 to 0.955 g/100 mL of tartaric acid and pH from 3.42 to 3.85. In every instance titratable acidities were lower in 2005 than in 2006. At the commencement of ripening the titratable acidity was always much greater at the two highest vineyards. TSS values at harvest were 21.35-23 and 20.77-24.17 for the 2005 and 2006 vintages, respectively. At maturity, total anthocyanins ranged from 310 to 401 in 2005 and from 304 to 477 (mg of malvidin-3-glicoside) in 2006 vintage. TPI levels (mgGAE/100 g of grapes skins) ranged from 652 to 906 in 2005 and from 739 to 966 in 2006 vintage. PCA clearly separated the different sites in relation to berry composition at maturity. Climate was strongly correlated with indices of phenological precocity and with vineyard altitude. A positive relationship was observed between the altitude – air temperature climate parameters and the duration of the grapevine phenological cycle (IPCY). Thus the vineyard at 774 m had the shortest IPCY while the vineyard at 1415 m had the longest IPCY. Other important relationships were observed during maturation of berry grapes: increases in pH and polyphenols and anthocyanins and a decrease in total acidity. Winkler Scale classifications (degree-days from budbreak to harvest) for the five vineyards have approximate values of 1380 to 2000. Thus the vineyards at 1415, 1350 m are in Regions I and II respectively, while the vineyards at 960 and 1160 m are in Region III and the vineyard at 774 m is in Region IV. Rainfall registered at meteorological stations from budbreak to harvest (2005 and 2006 vintages) ranged from approximately 450 to 980 mm. In general, it was concluded that Santa Catarina State is suitable for Cabernet Sauvignon growing.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Leila Denise FALCÃO (1), Emílio BRIGHENTI (2), Jean Pierre ROSIER (3), Antônio Ayrton AUZANI UBERTI (4), Marilde T. BORDIGNON-LUIZ (1)

(1) Departamento de Ciência e Tecnologia de Alimentos CAL/CCA/UFSC, Rodovia Admar Gonzaga, 1346, Itacorubi, 88034-001, Florianópolis-SC – Brazil
(2) UMR 1219 Œnologie, Université Victor Segalen Bordeaux 2, INRA, ISVV, Faculté d’Œnologie, 351 Cours de la Libération, F-33405 Talence cedex, France
(3) Empresa de Pesquisa e Extensão Agropecuária de Santa Catarina (EPAGRI-SC)- Videira-Brazil
(4) Departamento de Engenharia Rural, CCA/UFSC, Florianópolis-SC – Brazil

Contact the author

Keywords

Brazilian Cabernet Sauvignon grapes, ripening, mesoclimate, vineyard altitude, phenology

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.