Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Abstract

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages. The grapes were from five vineyards at different altitudes (774, 960, 1160, 1350 and 1415 m above sea level). Samples were analyzed for total soluble solids (TSS), titratable acidity (TA), Maturation Indices (TSS/TA and TSS x pH2), pH, total anthocyanins, total polyphenol index (TPI) and berry weight at 10-day intervals from véraison to harvest. Glories parameters were evaluated at maturity. Regression analysis and principal components analysis (PCA) were used to relate harvest data (berry composition at maturity and phenological events: budbreak, floraison and véraison) as a function of mesoclimate and vineyard altitude.
For the vintages studied, titratable acidities ranged from 0.59 to 0.955 g/100 mL of tartaric acid and pH from 3.42 to 3.85. In every instance titratable acidities were lower in 2005 than in 2006. At the commencement of ripening the titratable acidity was always much greater at the two highest vineyards. TSS values at harvest were 21.35-23 and 20.77-24.17 for the 2005 and 2006 vintages, respectively. At maturity, total anthocyanins ranged from 310 to 401 in 2005 and from 304 to 477 (mg of malvidin-3-glicoside) in 2006 vintage. TPI levels (mgGAE/100 g of grapes skins) ranged from 652 to 906 in 2005 and from 739 to 966 in 2006 vintage. PCA clearly separated the different sites in relation to berry composition at maturity. Climate was strongly correlated with indices of phenological precocity and with vineyard altitude. A positive relationship was observed between the altitude – air temperature climate parameters and the duration of the grapevine phenological cycle (IPCY). Thus the vineyard at 774 m had the shortest IPCY while the vineyard at 1415 m had the longest IPCY. Other important relationships were observed during maturation of berry grapes: increases in pH and polyphenols and anthocyanins and a decrease in total acidity. Winkler Scale classifications (degree-days from budbreak to harvest) for the five vineyards have approximate values of 1380 to 2000. Thus the vineyards at 1415, 1350 m are in Regions I and II respectively, while the vineyards at 960 and 1160 m are in Region III and the vineyard at 774 m is in Region IV. Rainfall registered at meteorological stations from budbreak to harvest (2005 and 2006 vintages) ranged from approximately 450 to 980 mm. In general, it was concluded that Santa Catarina State is suitable for Cabernet Sauvignon growing.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Leila Denise FALCÃO (1), Emílio BRIGHENTI (2), Jean Pierre ROSIER (3), Antônio Ayrton AUZANI UBERTI (4), Marilde T. BORDIGNON-LUIZ (1)

(1) Departamento de Ciência e Tecnologia de Alimentos CAL/CCA/UFSC, Rodovia Admar Gonzaga, 1346, Itacorubi, 88034-001, Florianópolis-SC – Brazil
(2) UMR 1219 Œnologie, Université Victor Segalen Bordeaux 2, INRA, ISVV, Faculté d’Œnologie, 351 Cours de la Libération, F-33405 Talence cedex, France
(3) Empresa de Pesquisa e Extensão Agropecuária de Santa Catarina (EPAGRI-SC)- Videira-Brazil
(4) Departamento de Engenharia Rural, CCA/UFSC, Florianópolis-SC – Brazil

Contact the author

Keywords

Brazilian Cabernet Sauvignon grapes, ripening, mesoclimate, vineyard altitude, phenology

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Different oxygen and sulphur dioxide concentrations in ‘Sauvignon blanc’ must: effect on the composition of the must and wine

The effects of different oxygen and sulphur dioxide additions to South African ‘Sauvignon blanc’ musts were investigated. Oxygen addition without SO2 protection led to lower levels of certain volatile thiols in the wines, with a corresponding decrease in certain phenols and glutathione concentrations.

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).

Multicriteria assessment of 11 agroecological viticulture systems during six years

Context and purpose of the study. Modern conventional agriculture, including viticulture, relies greatly on the use of chemical inputs, especially synthetic pesticides.

Lead levels in fortified wines

AIM The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.