Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Abstract

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages. The grapes were from five vineyards at different altitudes (774, 960, 1160, 1350 and 1415 m above sea level). Samples were analyzed for total soluble solids (TSS), titratable acidity (TA), Maturation Indices (TSS/TA and TSS x pH2), pH, total anthocyanins, total polyphenol index (TPI) and berry weight at 10-day intervals from véraison to harvest. Glories parameters were evaluated at maturity. Regression analysis and principal components analysis (PCA) were used to relate harvest data (berry composition at maturity and phenological events: budbreak, floraison and véraison) as a function of mesoclimate and vineyard altitude.
For the vintages studied, titratable acidities ranged from 0.59 to 0.955 g/100 mL of tartaric acid and pH from 3.42 to 3.85. In every instance titratable acidities were lower in 2005 than in 2006. At the commencement of ripening the titratable acidity was always much greater at the two highest vineyards. TSS values at harvest were 21.35-23 and 20.77-24.17 for the 2005 and 2006 vintages, respectively. At maturity, total anthocyanins ranged from 310 to 401 in 2005 and from 304 to 477 (mg of malvidin-3-glicoside) in 2006 vintage. TPI levels (mgGAE/100 g of grapes skins) ranged from 652 to 906 in 2005 and from 739 to 966 in 2006 vintage. PCA clearly separated the different sites in relation to berry composition at maturity. Climate was strongly correlated with indices of phenological precocity and with vineyard altitude. A positive relationship was observed between the altitude – air temperature climate parameters and the duration of the grapevine phenological cycle (IPCY). Thus the vineyard at 774 m had the shortest IPCY while the vineyard at 1415 m had the longest IPCY. Other important relationships were observed during maturation of berry grapes: increases in pH and polyphenols and anthocyanins and a decrease in total acidity. Winkler Scale classifications (degree-days from budbreak to harvest) for the five vineyards have approximate values of 1380 to 2000. Thus the vineyards at 1415, 1350 m are in Regions I and II respectively, while the vineyards at 960 and 1160 m are in Region III and the vineyard at 774 m is in Region IV. Rainfall registered at meteorological stations from budbreak to harvest (2005 and 2006 vintages) ranged from approximately 450 to 980 mm. In general, it was concluded that Santa Catarina State is suitable for Cabernet Sauvignon growing.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Leila Denise FALCÃO (1), Emílio BRIGHENTI (2), Jean Pierre ROSIER (3), Antônio Ayrton AUZANI UBERTI (4), Marilde T. BORDIGNON-LUIZ (1)

(1) Departamento de Ciência e Tecnologia de Alimentos CAL/CCA/UFSC, Rodovia Admar Gonzaga, 1346, Itacorubi, 88034-001, Florianópolis-SC – Brazil
(2) UMR 1219 Œnologie, Université Victor Segalen Bordeaux 2, INRA, ISVV, Faculté d’Œnologie, 351 Cours de la Libération, F-33405 Talence cedex, France
(3) Empresa de Pesquisa e Extensão Agropecuária de Santa Catarina (EPAGRI-SC)- Videira-Brazil
(4) Departamento de Engenharia Rural, CCA/UFSC, Florianópolis-SC – Brazil

Contact the author

Keywords

Brazilian Cabernet Sauvignon grapes, ripening, mesoclimate, vineyard altitude, phenology

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Observatoire Grenache en vallée du Rhône : démarche et premiers résultats après une année d’étude

Face à l’enjeu d’affirmer et de mieux comprendre la spécificité des vins en relation avec leur origine, la notion de « terroir », avec la richesse de sens et la diversité des perspectives qui l’éclairent, se révèle la clef de voûte de la production et de la valorisation de vins personnalisés et typiques. Asseoir la connaissance des principaux terroirs de la Vallée du Rhône sur des bases autres que celles, jusqu’alors essentiellement empiriques, invoquées dans la seconde grande région française productrice de vins d’AOC, constitue un projet conforme à l’intérêt voué à cet enjeu d’actualité.

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.