Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Vine growing description of Aeolian archipelago

Vine growing description of Aeolian archipelago

Abstract

An agroclimatic description of Aeolian archipelago viticulture area (Me), Italy is presented. Aeolian archipelago is located off the northeastern coast of Sicily and it includes the islands of Alicudi, Filicudi, Salina, Panarea, Lipari, Stromboli and Vulcano. At present vine growing in this area accounts for about 160.0 ha, 96.0 of which at cv Malvasia di Lipari; the remaining 64.0 ha are dedicated to other varieties. The appellation Malvasia delle Lipari DOC includes sweet aromatic white wines, raisin wines and fortified wines from Malvasia di Lipari and Corinto Nero varieties. The appellation IGT Salina produces white, red, and rosé wines as well as monovarietal wines with the indication of the specific variety (Malvasia di Lipari, Catarratto bianco, Nerello mascalese, Ansonica, Nero d’Avola, Corinto nero, etc.).
The agroclimatic analysis concerned rainfalls, temperatures, vine specific bioclimatic indexes (Winkler, Huglin, Branas and Fregoni), ET0, and hydro-cultural consumptions. The agrometeorological data were provided by Sicilian Agrometeorological Information Service (SIAS) and by Regional Hydrographical Service (SI). The study allowed achieving an agroclimatic description of Aeolian archipelago, which is functional to the improvement of traceability and any kind of further study for territorial programming, as well as the evaluation of territorial aptitudes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Michelangelo POLICARPO (1), Vincenzo PERNICE (1), Antonino DRAGO (2) and Dario CARTABELLOTTA (2)

(1) Vivaio Federico Paulsen – Regione Siciliana, Via A. Lo Bianco 1, 90144 – Palermo, Italy
(2) Dipartimento Interventi Infrastrutturali – Regione Siciliana, Viale R. Siciliana 2771, 90145 – Palermo, Italy

Contact the author

Keywords

 GIS, bioclimatic indexes, grapevines, temperature, phenological phases

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Chitosan elicits mono-glucosylated stilbene production and release in fed-batch fermentation of grape cells 

In the present study, the optimal conditions of grape (Vitis vinifera cv ‘Barbera’) cell cultures in batch and fed-batch bioreactor processes were studied to specifically improve the production of mono-glucosylated stilbenes.

The economic impact of drones on viticultural processes

Nowadays there are many challenges facing both winegrowers and workers, in other agricultural practices, related to the growing demand for food products, the safety and quality of these products, and the preservation of the environment…

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

A sundial vineyard: impact of row density and orientation on cv. Cabernet-Sauvignon physiology and grape composition, insights to face a climate change scenario

An experimental vineyard with a radial array was planted in 2018, to provide valuable information on the relationship between orientation and planting density on plant physiology and cluster microclimate, and the consequent impacts on grape secondary metabolites, including aromas and polyphenols.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.