Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Vine growing description of Aeolian archipelago

Vine growing description of Aeolian archipelago

Abstract

An agroclimatic description of Aeolian archipelago viticulture area (Me), Italy is presented. Aeolian archipelago is located off the northeastern coast of Sicily and it includes the islands of Alicudi, Filicudi, Salina, Panarea, Lipari, Stromboli and Vulcano. At present vine growing in this area accounts for about 160.0 ha, 96.0 of which at cv Malvasia di Lipari; the remaining 64.0 ha are dedicated to other varieties. The appellation Malvasia delle Lipari DOC includes sweet aromatic white wines, raisin wines and fortified wines from Malvasia di Lipari and Corinto Nero varieties. The appellation IGT Salina produces white, red, and rosé wines as well as monovarietal wines with the indication of the specific variety (Malvasia di Lipari, Catarratto bianco, Nerello mascalese, Ansonica, Nero d’Avola, Corinto nero, etc.).
The agroclimatic analysis concerned rainfalls, temperatures, vine specific bioclimatic indexes (Winkler, Huglin, Branas and Fregoni), ET0, and hydro-cultural consumptions. The agrometeorological data were provided by Sicilian Agrometeorological Information Service (SIAS) and by Regional Hydrographical Service (SI). The study allowed achieving an agroclimatic description of Aeolian archipelago, which is functional to the improvement of traceability and any kind of further study for territorial programming, as well as the evaluation of territorial aptitudes.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Michelangelo POLICARPO (1), Vincenzo PERNICE (1), Antonino DRAGO (2) and Dario CARTABELLOTTA (2)

(1) Vivaio Federico Paulsen – Regione Siciliana, Via A. Lo Bianco 1, 90144 – Palermo, Italy
(2) Dipartimento Interventi Infrastrutturali – Regione Siciliana, Viale R. Siciliana 2771, 90145 – Palermo, Italy

Contact the author

Keywords

 GIS, bioclimatic indexes, grapevines, temperature, phenological phases

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Guyot or pergola for dehydration of Rondinella grape

Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties

Conversion to mechanical management in vineyards maintains fruit

Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.