Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Analysis of climatic changes in different areas of Abruzzo region (Central Italy): implications for grape growing

Analysis of climatic changes in different areas of Abruzzo region (Central Italy): implications for grape growing

Abstract

The dynamic evolution of some bioclimatic indices largely used to define the vocation of areas to grape growing was assessed over 43 years (1965-2007) in four sites of the Abruzzo Region (Central Italy). Nowadays Abruzzo has about 34.000 ha of vineyards mainly located in coastal areas running North-South along the Adriatic Sea, while the inland mountainous areas reduced their importance in the last 60 years.
In the maritime areas, represented by Lanciano and Nereto weather stations, rainfall amounts during vegetative period (from April to October) showed a reduction around 1980 while average growing degree days (GDD) remained stable until 1997, when a sudden increase (change point) of about 320 GDD was registered in Lanciano, but not in Nereto. This Northern maritime area became slightly cooler: average air minimum temperature during vegetative phase decreased in 1971-1977 period, and also air maximum temperature decreased after 1985. In the inland area (Sulmona), “change point” analysis revealed a sudden increase of average GDD, maximum and minimum air temperature around 1980, but no quick change in rainfall was assessed.
In Abruzzo Region, as already reported for other areas of Europe, changes of some climate parameters influencing grape ripening and composition occurred in these last decades, but with different modality according to the characteristics of the area.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Oriana SILVESTRONI (1), Bruno DI LENA (2), Fernando ANTENUCCI (2), Alberto PALLIOTTI (3)

(1) Dip. Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche, Ancona
(2) Regione Abruzzo, Centro Agrometeorologico Regionale, Scerni (Chieti)
(3) Dip. Scienze Agrarie e Ambientali, Università di Perugia

Contact the author

Keywords

viticulture, climate variability, climate indices

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Consumo hídrico de la vid, c.v. Listán negro, en la comarca de Tacoronte-Acentejo. Tenerife

Durante el bienio 1998-1999 se estudió el uso consuntivo de cultivos de viña var. Listán negro, en cuatro fincas situadas en la Comarca de Tacoronte-Acentejo, en la isla de Tenerife.

Synthesis of the contribution of the Giesco (group of international experts of vitivinicultural systems for cooperation) to the study of terroirs

Since 1998, the GiESCO (previously named GESCO: Groupe d’Etude des Systèmes de COnduite de la vigne) has provided the scientific community with relevant contributions to the study of terroirs. Here is a synthesis of the main terroir-related fields and the major ideas the GiESCO has developed: Basic Terroir Unit and climate, Vine Ecophysiology and microclimate – moderate drought, Vineyard heterogeneity and new technologies, Viticultural Terroir Unit and canopy management, Terroir – Territory and man.

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.

Impact of technical itineraries on the diversity and the functioning of arbuscular mycorrhizal fungi and associated microorganisms in vineyards soils and grapevine roots

Context and purpose. The vine is a holobiont, where the plant interacts positively, negatively, and neutrally with microbes that together form the vine’s microbiome.

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin.