Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climatic change and terroir 9 Analysis of climatic changes in different areas of Abruzzo region (Central Italy): implications for grape growing

Analysis of climatic changes in different areas of Abruzzo region (Central Italy): implications for grape growing

Abstract

The dynamic evolution of some bioclimatic indices largely used to define the vocation of areas to grape growing was assessed over 43 years (1965-2007) in four sites of the Abruzzo Region (Central Italy). Nowadays Abruzzo has about 34.000 ha of vineyards mainly located in coastal areas running North-South along the Adriatic Sea, while the inland mountainous areas reduced their importance in the last 60 years.
In the maritime areas, represented by Lanciano and Nereto weather stations, rainfall amounts during vegetative period (from April to October) showed a reduction around 1980 while average growing degree days (GDD) remained stable until 1997, when a sudden increase (change point) of about 320 GDD was registered in Lanciano, but not in Nereto. This Northern maritime area became slightly cooler: average air minimum temperature during vegetative phase decreased in 1971-1977 period, and also air maximum temperature decreased after 1985. In the inland area (Sulmona), “change point” analysis revealed a sudden increase of average GDD, maximum and minimum air temperature around 1980, but no quick change in rainfall was assessed.
In Abruzzo Region, as already reported for other areas of Europe, changes of some climate parameters influencing grape ripening and composition occurred in these last decades, but with different modality according to the characteristics of the area.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Oriana SILVESTRONI (1), Bruno DI LENA (2), Fernando ANTENUCCI (2), Alberto PALLIOTTI (3)

(1) Dip. Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche, Ancona
(2) Regione Abruzzo, Centro Agrometeorologico Regionale, Scerni (Chieti)
(3) Dip. Scienze Agrarie e Ambientali, Università di Perugia

Contact the author

Keywords

viticulture, climate variability, climate indices

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Modulation of berry composition by different vineyard management practices

High concentration of sugars in grapes and alcohol in wines is one of the consequences of climate change on viticulture production in several wine-growing regions. In order to investigate the possibilities of adaptation of vineyard management practices aimed to reduce the accumulation of sugar during the maturation phase without reducing the accumulation of anthocyanins in grapes, a study with severe shoot trimming, shoot thinning, cluster thinning and date of harvest was conducted on Merlot variety in Istria region (Croatia), under the Mediterranean climate. Four factors which may affect grape maturation and its composition at harvest were investigated in a two-years experiment; severe shoot trimming applied at veraison when >80% of berries changed colour (in comparison to untreated control), shoot thinning (0 and 30%), cluster thinning (0 and 30%), and the date of harvest (early and standard harvest dates). Shoot thinning had no significant impact on berry composition, despite the obtained reduction in yield per vine. Lower Brix in grapes were obtained with earlier harvest date and if no cluster thinning was applied, although at the same time a reduction in the concentration of anthocyanins in berries was observed in these treatments. On the other hand, if severe shoot trimming was applied when >80% of berries changed colour, a reduction of Brix was obtained without a negative impact on berry anthocyanins concentration. We conclude that in cases when undesirably high sugar concentrations at harvest are expected, severe shoot trimming at 80% veraison may effectively be used in order to obtain moderate sugar concentration in berries together with the adequate phenolic composition.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Conservation: the best valorisation strategy for wine growing areas

Terroir encompasses many elements, including environment, grapes and human inputs that together contribute to the final wine quality of a certain wine growing area.

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information.