Terroir 2008 banner
IVES 9 IVES Conference Series 9 Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

Abstract

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material. 
With the objective of maximizing the behaviour of this variety in this terroir, it was installed in Vinibrasil – Vinhos do Brasil, SA a trial field to compare the relations “variety x rootstock”, with 10 clones (5 of Aragonez – Portuguese origin and 5 of Tempranillo – Spanish origin), combined with 6 rootstocks (IAC313, IAC572, 1103P, 420A, 101-14 e SO4). 
The first results show greater yield on the rootstocks 101-14 and IAC 313 in both varieties, while in grape composition only few differences were found. 
The most interesting combinations are: 
Aragonez: cl. Ar-110-JBP/101-14, cl. Ar-60-EAN/101-14, cl. Ar-110-JBP/IAC313, cl. Ar-60-EAN/IAC313, cl. Ar-Embrapa/IAC313 e cl. Ar-Embrapa/SO4. 
Tempranillo: cl. Tp-770/101-14, cl. Tp-E24/101-14, cl. Tp-Embrapa/101-14, cl. Tp-770/IAC313, cl. Tp-E24/IAC313, cl. Tp-Embrapa/IAC313 e cl. Tp-Embrapa/SO4. 
The introduction of the variety Aragonez (sin. Tempranillo) in Vinibrasil is contributing to obtain world class wines. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

CRUZ, A. (1); SANTOS, J. (2); GOMES, C. (2,3); CASTRO, R. (1)

(1) Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa (Portugal)
(2) Vinibrasil, Fazenda Planaltino, Lagoa Grande (Brasil)
(3) Dão Sul, Soc. Vitivinícola, SA., Quinta de Cabriz, Currelos, 3430-909 Carregal do Sal (Portugal)

Contact the author

Keywords

 semi-arid tropical climate, Aragonez (sin. Tempranillo), grape composition, clones and rootstocks 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Evaluation of winegrape anthocyanins in the vineyard using a portable fluorimetric sensor: seasonal and water regime effects

Accumulation of anthocyanins (Anth) on whole winegrape (Vitis vinifera L.) bunches attached to the vine was monitored by a fluorescence-based sensor (Multiplex) on ‘Aleatico’ and ‘Nero d’Avola’. Different water regimes were applied.

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.