Terroir 2008 banner
IVES 9 IVES Conference Series 9 Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

Abstract

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material. 
With the objective of maximizing the behaviour of this variety in this terroir, it was installed in Vinibrasil – Vinhos do Brasil, SA a trial field to compare the relations “variety x rootstock”, with 10 clones (5 of Aragonez – Portuguese origin and 5 of Tempranillo – Spanish origin), combined with 6 rootstocks (IAC313, IAC572, 1103P, 420A, 101-14 e SO4). 
The first results show greater yield on the rootstocks 101-14 and IAC 313 in both varieties, while in grape composition only few differences were found. 
The most interesting combinations are: 
Aragonez: cl. Ar-110-JBP/101-14, cl. Ar-60-EAN/101-14, cl. Ar-110-JBP/IAC313, cl. Ar-60-EAN/IAC313, cl. Ar-Embrapa/IAC313 e cl. Ar-Embrapa/SO4. 
Tempranillo: cl. Tp-770/101-14, cl. Tp-E24/101-14, cl. Tp-Embrapa/101-14, cl. Tp-770/IAC313, cl. Tp-E24/IAC313, cl. Tp-Embrapa/IAC313 e cl. Tp-Embrapa/SO4. 
The introduction of the variety Aragonez (sin. Tempranillo) in Vinibrasil is contributing to obtain world class wines. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

CRUZ, A. (1); SANTOS, J. (2); GOMES, C. (2,3); CASTRO, R. (1)

(1) Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa (Portugal)
(2) Vinibrasil, Fazenda Planaltino, Lagoa Grande (Brasil)
(3) Dão Sul, Soc. Vitivinícola, SA., Quinta de Cabriz, Currelos, 3430-909 Carregal do Sal (Portugal)

Contact the author

Keywords

 semi-arid tropical climate, Aragonez (sin. Tempranillo), grape composition, clones and rootstocks 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.