Terroir 2008 banner
IVES 9 IVES Conference Series 9 Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

Abstract

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring. The experiment was carried out in a fully productive vineyard with espalier cultivation and different varieties in one of the largest terroirs of La Mancha (region in the center of Spain). Eight red varieties, i.e., five traditional varieties of the region (Tempranillo, Garnacha Tinta, Bobal, Tinto Velasco and Moravia Agria) and three international varieties (Merlot, Syrah and Cabernet Sauvignon), were studied.
Daily monitoring of the gas exchange was performed with a portable infrared gas exchange system at different development stages (closure of the bunches, veraison and maturity). The recorded measurements allowed to determine, for each studied variety, the values of net photosynthesis (AN), stomatal conductance (gs) and transpiration (E) as well as to calculate intrinsic water use efficiency (WUEi).
The results showed significant differences between varieties as far as the gas exchange parameters are concerned. Bobal, Moravia Agria and Cabernet Sauvignon showed rather high assimilation rates (AN) during the day, usually above the rest. In turn, the WUEi proved that the Garnacha Tinta and Tempranillo varieties belong to the most efficient group under moderate water stress conditions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Jesús MARTÍNEZ GASCUEÑA and Juan Luis CHACÓN VOZMEDIANO

Instituto de la Vid y del Vino de Castilla-La Mancha (IVICAM).
Ctra. de Albacete, s/n. 13700 Tomelloso (Ciudad Real), Spain

Contact the author

Keywords

varieties, intrinsic water use efficiency, photosynthesis, Vitis vinífera

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.

European consumer preference for wines made from fungus resistant grape varieties

Fungus resistant grape varieties (FRGV or PIWI) offer many benefits such as less pesticide use or premium prices for enhanced sustainability. Still, winemakers are concerned about inferior wine quality. This study evaluates how European wine consumers assess wines made from new FRGVs in comparison to traditional V. vinifera varieties. Most of them were grown in the same vineyard. Four white (Calardis Blanc, Muscaris, Sauvignac, Cabernet Blanc) und three red (Satin Noir, Cabernet Cortis, Laurot) FRGV were compared to Riesling, Sauvignon blanc, Muskateller, Cab. Sauvignon and Merlot. For each FRGV, different styles were vinified using standardized protocols.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.