Terroir 2008 banner
IVES 9 IVES Conference Series 9 Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

Abstract

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring. The experiment was carried out in a fully productive vineyard with espalier cultivation and different varieties in one of the largest terroirs of La Mancha (region in the center of Spain). Eight red varieties, i.e., five traditional varieties of the region (Tempranillo, Garnacha Tinta, Bobal, Tinto Velasco and Moravia Agria) and three international varieties (Merlot, Syrah and Cabernet Sauvignon), were studied.
Daily monitoring of the gas exchange was performed with a portable infrared gas exchange system at different development stages (closure of the bunches, veraison and maturity). The recorded measurements allowed to determine, for each studied variety, the values of net photosynthesis (AN), stomatal conductance (gs) and transpiration (E) as well as to calculate intrinsic water use efficiency (WUEi).
The results showed significant differences between varieties as far as the gas exchange parameters are concerned. Bobal, Moravia Agria and Cabernet Sauvignon showed rather high assimilation rates (AN) during the day, usually above the rest. In turn, the WUEi proved that the Garnacha Tinta and Tempranillo varieties belong to the most efficient group under moderate water stress conditions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Jesús MARTÍNEZ GASCUEÑA and Juan Luis CHACÓN VOZMEDIANO

Instituto de la Vid y del Vino de Castilla-La Mancha (IVICAM).
Ctra. de Albacete, s/n. 13700 Tomelloso (Ciudad Real), Spain

Contact the author

Keywords

varieties, intrinsic water use efficiency, photosynthesis, Vitis vinífera

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.

Terroir aspects of harvest timing in a cool climate wine region: physiology, berry skin phenolic composition and wine quality

Preliminary experiment of harvest timing was carried out in Eger wine district, Hungary in 2009. In situ physiological responses, berry quality parameters and wine quality of the Kékfrankos grapevine were studied at two growing sites (Eger-K6lyuktet6 – non-stressed, flat vineyard, and Eger-Nagyeged hill – water stressed, steep slope vineyard).

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Grapevine genotypes with potential for reducing the carbon footprint in the atmosphere and cultivation in a biological system

The concentration of CO2 in the atmosphere is increasing from year to year. Taking into account the calculations of the greenhouse gas inventory, it was found that approximately 70% of CO2 in the atmosphere is absorbed by vegetation (forests, agricultural land, etc.).

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.