Terroir 2008 banner
IVES 9 IVES Conference Series 9 Fermentations management: tools for the preservation of the wine specificity

Fermentations management: tools for the preservation of the wine specificity

Abstract

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol. They can lead to sluggish fermentations. B. bruxellensis produce volatile phenols affecting fruity and freshness wines characters. Some indigenous O. oeni strains can be responsible for the presence of biogenic amines in wines. To overcome these problems, the use of selected yeast and bacteria strains is the most efficient tool. However, controlling the native flora industrial strains should not reduce the singularity of each wine. 
Selection process should take into account the aromatic profile of the strains in addition to their fermentative capacity. Researchers should provide large pool of strains suitable to be used for different types of wines. These considerations are crucial for white wines where it is essential to encourage the expression of the varietals qualities. In red wines, strain neutrality aromatic is more recommended and the focus should be made on fermentative kinetics and microbial security. 
The objective of our work is to raise question of the specificity and the diversity of the microbial species and strains involved in winemaking. Probably stemming from their isolation origin, strains exhibited several differences which should be used to encourage the preservation of the differences between each type of wines and to respect the ‘terroir’ impact and the originality of each wine. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Vincent RENOUF (1,3), Charlotte Gourraud (1) and Marie-Laure Murat (2)

(1) Laffort, BP 17, 33072 Bordeaux cedex 15, FRANCE
(2) Laboratoire SARCO, filiale de recherche de la société Laffort, BP 40, 33072 Bordeaux, FRANCE
(3) ENITA de Bordeaux, 1 cours du général de Gaulle, 33175 Gradignan cedex, FRANCE

Contact the author

Keywords

microbial diversity, yeast, bacteria, strains, wine typicity, spoilage 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Developing an integrated viticulture in the upper part of the hill Somló

The hill Somló looks like a huge island wich jumps out of the see, a few kilometers away from the slope of Bakony highland and on the edge of the Hungarian small plane.

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.