Terroir 2008 banner
IVES 9 IVES Conference Series 9 Fermentations management: tools for the preservation of the wine specificity

Fermentations management: tools for the preservation of the wine specificity

Abstract

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol. They can lead to sluggish fermentations. B. bruxellensis produce volatile phenols affecting fruity and freshness wines characters. Some indigenous O. oeni strains can be responsible for the presence of biogenic amines in wines. To overcome these problems, the use of selected yeast and bacteria strains is the most efficient tool. However, controlling the native flora industrial strains should not reduce the singularity of each wine. 
Selection process should take into account the aromatic profile of the strains in addition to their fermentative capacity. Researchers should provide large pool of strains suitable to be used for different types of wines. These considerations are crucial for white wines where it is essential to encourage the expression of the varietals qualities. In red wines, strain neutrality aromatic is more recommended and the focus should be made on fermentative kinetics and microbial security. 
The objective of our work is to raise question of the specificity and the diversity of the microbial species and strains involved in winemaking. Probably stemming from their isolation origin, strains exhibited several differences which should be used to encourage the preservation of the differences between each type of wines and to respect the ‘terroir’ impact and the originality of each wine. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Vincent RENOUF (1,3), Charlotte Gourraud (1) and Marie-Laure Murat (2)

(1) Laffort, BP 17, 33072 Bordeaux cedex 15, FRANCE
(2) Laboratoire SARCO, filiale de recherche de la société Laffort, BP 40, 33072 Bordeaux, FRANCE
(3) ENITA de Bordeaux, 1 cours du général de Gaulle, 33175 Gradignan cedex, FRANCE

Contact the author

Keywords

microbial diversity, yeast, bacteria, strains, wine typicity, spoilage 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

How different SO2 doses impact amino acid and volatile profile of white wines

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Recommended grapevine varieties for the vineyards zone Vrsac and trend meteorological elements

The aim of this paper was to analyze trends of the meteorological elements and determine suitability of growing grapevine cultivar in viticulture region.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.