Terroir 2008 banner
IVES 9 IVES Conference Series 9 Fermentations management: tools for the preservation of the wine specificity

Fermentations management: tools for the preservation of the wine specificity

Abstract

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol. They can lead to sluggish fermentations. B. bruxellensis produce volatile phenols affecting fruity and freshness wines characters. Some indigenous O. oeni strains can be responsible for the presence of biogenic amines in wines. To overcome these problems, the use of selected yeast and bacteria strains is the most efficient tool. However, controlling the native flora industrial strains should not reduce the singularity of each wine. 
Selection process should take into account the aromatic profile of the strains in addition to their fermentative capacity. Researchers should provide large pool of strains suitable to be used for different types of wines. These considerations are crucial for white wines where it is essential to encourage the expression of the varietals qualities. In red wines, strain neutrality aromatic is more recommended and the focus should be made on fermentative kinetics and microbial security. 
The objective of our work is to raise question of the specificity and the diversity of the microbial species and strains involved in winemaking. Probably stemming from their isolation origin, strains exhibited several differences which should be used to encourage the preservation of the differences between each type of wines and to respect the ‘terroir’ impact and the originality of each wine. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Vincent RENOUF (1,3), Charlotte Gourraud (1) and Marie-Laure Murat (2)

(1) Laffort, BP 17, 33072 Bordeaux cedex 15, FRANCE
(2) Laboratoire SARCO, filiale de recherche de la société Laffort, BP 40, 33072 Bordeaux, FRANCE
(3) ENITA de Bordeaux, 1 cours du général de Gaulle, 33175 Gradignan cedex, FRANCE

Contact the author

Keywords

microbial diversity, yeast, bacteria, strains, wine typicity, spoilage 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Smoke exposure effects on red wines: how much is too much?

Increasing wildfire frequency in the United States has led to the indirect impact of smoke in vineyards, affecting grape quality and wine sensory attributes, commonly called “smoke taint”.

Evolution of flavonols during Merlot winemaking processes

The phenomenon of quercetin precipitation in wine (flanovol haze), has been manifested for many years in several wine-producing regions

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.