Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Mesoclimate and Topography influence on grape composition and yield in the AOC Priorat

Mesoclimate and Topography influence on grape composition and yield in the AOC Priorat

Abstract

The Priorat AOC, which is situated behind the coastal mountain range of Tarragona, is characterised by a Mediterranean climate that tends towards continentality and has very little precipitation during the vegetation cycle. The soil is poor quality, dry and pebbly, and made up of schist. To measure how topographie and mesoclimate affects the qualitative potential of Grenache in the Priorat, we evaluated the changes on grape composition during ripening and at harvest. The study was carried out during the 2002 (temperate) and 2003 (warm) vintages and the trial was performed in 8 plots: two villages in two different mesoclimates were selected, early and late ripening and, two different terraces in each village, topographically located up and down of the slope. Alcohol degree, acidity, pH, skin anthocyanins, the anthocyanin content in the berry and the berry weight were sampled and analyzed during maturity. Yield was determined at harvest. Sugar content increased in early regions and cooler vintage, however, in late regions, the noticeable increase happened in the warmer vintage. Extractable anthocyanins in berries increased during ripening in early region and cooler vintage, nevertheless, the accumulation stopped o decrease a week before harvest in the warmest regions. The plot located in high altitude (late region) didn’t attaint the complete maturity as such showed the low anthocyanin concentration. Topography effects revealed higher concentration of anthocyanins, low yield and low berry weight associated to the terraces located in the up side of the hill in temperate vintage. The warm vintage affects grape composition decreasing anthocyanins and yields. No effect was found comparing early and late regions for both, yield and vintage.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Nadal MONTSE, Mateos SUMPTA, Miriam LAMPREAVE

Dept de Bioquímica i Biotecnologia. Facultat d’Enologia de Tarragona. Universitat Rovira i Virgili. Campus Sescelades, Marcel·lí Domingo, s/n, 43007 Tarragona

Contact the author

Keywords

Terroir, topographie, mesoclimate, grape composition, yield, Priorat

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

For a phenomenology of terroir. A consumers’ perspective

This study investigates the notion of terroir by applying a phenomenological approach, focusing on the subjective experience of consumers. We will consider how terroir is described by consumers in order to gauge their subjective viewpoint and understand their way of describing and defining this spatiality.

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).