Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Abstract

Grape-growing terroirs were defined according to the method proposed by Falcetti and Asselin (1996) near of Colonia de Sacramento, a city of Uruguay situated on the left of the “Rio de la Plata”. In a second stage, the performance of the plants of Tannat variety implanted in vineyards situated at two UTB, named “Real de Vera” and “Riachuelo”, were analyzed to confirm the suggested delimitation during three years. The studies were realized in three vineyards. The weight of the berries and the pruning weight by plant were determinated. The determination of the leaves water potential was realized after the budburst and the potential exposed leave area was determinated at the veraison. Vinifications of 50 kg of grapes per vineyards were done. The wines were analyzed, determining the classical oenological parameters and the global polyphenolic composition. The index of Ravaz, the ratio SFE p / yield and the water status by plots were determinated. The effect of the year was clearly observed on the total of the vineyards. The yields per plant, the weight of pruning, the potential foliar surface expose and the index of Ravaz presented significant differences between vineyards. The differences between the indicators of physiologic answer, the yields and the wine composition were clearly explained by the characteristics of the soil, the water status and the viticultural practices. The plants submit at stress during the maturation were the most equilibrated.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Gerardo ECHEVERRÍA (1); Milka FERRER (1); Gustavo GONZÁLEZ-NEVES (1,2); Alvaro MONTAÑA (1); Gianfranca CAMUSSI (1); Juan HERNÁNDEZ (3); Rodolfo PEDOCCHI (1)

(1) Universidad de la República (UDELAR) – Facultad de Agronomía – Uruguay
Domicilio: Garzón 780, CP 12400, Montevideo, Uruguay.
(2) I.NA.VI (Instituto Nacional de Vitivinicultura) – Las Piedras, Uruguay
(3) Universidad de la República (UDELAR) – Facultad de Ciencias – Uruguay

Contact the author

Keywords

Tannat, terroir, physiologic response indicators, wine composition, Colonia del Sacramento

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

The METAPIWI project advances viticulture research by examining microbial communities in PIWI (fungus-resistant) grapevines compared to traditional Vitis vinifera. It investigates how these microbes influence spontaneous fermentation and the production of distinct metabolites and aromas.

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.