Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Abstract

Grape-growing terroirs were defined according to the method proposed by Falcetti and Asselin (1996) near of Colonia de Sacramento, a city of Uruguay situated on the left of the “Rio de la Plata”. In a second stage, the performance of the plants of Tannat variety implanted in vineyards situated at two UTB, named “Real de Vera” and “Riachuelo”, were analyzed to confirm the suggested delimitation during three years. The studies were realized in three vineyards. The weight of the berries and the pruning weight by plant were determinated. The determination of the leaves water potential was realized after the budburst and the potential exposed leave area was determinated at the veraison. Vinifications of 50 kg of grapes per vineyards were done. The wines were analyzed, determining the classical oenological parameters and the global polyphenolic composition. The index of Ravaz, the ratio SFE p / yield and the water status by plots were determinated. The effect of the year was clearly observed on the total of the vineyards. The yields per plant, the weight of pruning, the potential foliar surface expose and the index of Ravaz presented significant differences between vineyards. The differences between the indicators of physiologic answer, the yields and the wine composition were clearly explained by the characteristics of the soil, the water status and the viticultural practices. The plants submit at stress during the maturation were the most equilibrated.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Gerardo ECHEVERRÍA (1); Milka FERRER (1); Gustavo GONZÁLEZ-NEVES (1,2); Alvaro MONTAÑA (1); Gianfranca CAMUSSI (1); Juan HERNÁNDEZ (3); Rodolfo PEDOCCHI (1)

(1) Universidad de la República (UDELAR) – Facultad de Agronomía – Uruguay
Domicilio: Garzón 780, CP 12400, Montevideo, Uruguay.
(2) I.NA.VI (Instituto Nacional de Vitivinicultura) – Las Piedras, Uruguay
(3) Universidad de la República (UDELAR) – Facultad de Ciencias – Uruguay

Contact the author

Keywords

Tannat, terroir, physiologic response indicators, wine composition, Colonia del Sacramento

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The aroma diversity of italian white wines

AIM: Aroma is a key contributor to white wines sensory typicality, perceived diversity and overall preference.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Using open source software in viticultural research

Many high quality Open Source scientific applications have been available for a long time. Some of them have proved to be particularly useful for carrying out the usual activities involved in viticultural research projects, such as statistical analyses (including spatial analyses), GIS work, database management (possibly integrated with statistical and spatial analysis) and even “low-level” often highly time-consuming activities (e.g. repetitive task on text files).