Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Abstract

Grape-growing terroirs were defined according to the method proposed by Falcetti and Asselin (1996) near of Colonia de Sacramento, a city of Uruguay situated on the left of the “Rio de la Plata”. In a second stage, the performance of the plants of Tannat variety implanted in vineyards situated at two UTB, named “Real de Vera” and “Riachuelo”, were analyzed to confirm the suggested delimitation during three years. The studies were realized in three vineyards. The weight of the berries and the pruning weight by plant were determinated. The determination of the leaves water potential was realized after the budburst and the potential exposed leave area was determinated at the veraison. Vinifications of 50 kg of grapes per vineyards were done. The wines were analyzed, determining the classical oenological parameters and the global polyphenolic composition. The index of Ravaz, the ratio SFE p / yield and the water status by plots were determinated. The effect of the year was clearly observed on the total of the vineyards. The yields per plant, the weight of pruning, the potential foliar surface expose and the index of Ravaz presented significant differences between vineyards. The differences between the indicators of physiologic answer, the yields and the wine composition were clearly explained by the characteristics of the soil, the water status and the viticultural practices. The plants submit at stress during the maturation were the most equilibrated.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Gerardo ECHEVERRÍA (1); Milka FERRER (1); Gustavo GONZÁLEZ-NEVES (1,2); Alvaro MONTAÑA (1); Gianfranca CAMUSSI (1); Juan HERNÁNDEZ (3); Rodolfo PEDOCCHI (1)

(1) Universidad de la República (UDELAR) – Facultad de Agronomía – Uruguay
Domicilio: Garzón 780, CP 12400, Montevideo, Uruguay.
(2) I.NA.VI (Instituto Nacional de Vitivinicultura) – Las Piedras, Uruguay
(3) Universidad de la República (UDELAR) – Facultad de Ciencias – Uruguay

Contact the author

Keywords

Tannat, terroir, physiologic response indicators, wine composition, Colonia del Sacramento

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass