Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Global approach and application of terroir studies: product typicity and valorisation 9 Temperature variations in the Walla Walla valley American Viticultural Area

Temperature variations in the Walla Walla valley American Viticultural Area

Abstract

Variations in average growing season and ripening season temperatures within the Walla Walla Valley American Viticultural Area are related to elevation and regional and local topography. Downstream narrowing of the Walla Walla Valley creates a nocturnal cold air pool that is more pronounced during the August to October ripening season. Average growing season temperatures are generally higher and growing degree-days greater at lower elevations. Average temperatures increase with elevation to 450 m during the ripening season as temperature inversions become more pronounced and persistent. Cool air descending from the Blue Mountains lowers average growing and ripening season temperatures at sites near major streams. Adiabatic warming of down-sloping prevailing winds increases average growing season and ripening season temperatures near the base of Vansycle Ridge. Grapevines planted below 300 m have a much greater risk of damage from frosts and freezes. Variations in vineyard ground surface materials have no apparent effect on ambient air temperatures as measured by radiation shielded data loggers at a height of 1.5 m

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Kevin R. POGUE and Gregory M. DERING

Department of Geology, Whitman College, Walla Walla, WA 99362 USA

Contact the author

Keywords

Walla Walla Valley, temperature, elevation, topography, growing degree-day

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

Comparison of the skin resistance of several grape varieties in relation to their physico-chemical properties

The purpose of this study is to compare the skin resistance (SR) of the grapes with physico-chemical propertiess using a stong dataset and multidimentional statistical analysis .
A recent study has shown the role skin resistance plays against pest invasion but skin resistance could be a useful agronomic parameter, for example in the choice of the type of winemaking, by influencing the quantity of juice during crushing and maceration.

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.