Temperature variations in the Walla Walla valley American Viticultural Area

Abstract

Variations in average growing season and ripening season temperatures within the Walla Walla Valley American Viticultural Area are related to elevation and regional and local topography. Downstream narrowing of the Walla Walla Valley creates a nocturnal cold air pool that is more pronounced during the August to October ripening season. Average growing season temperatures are generally higher and growing degree-days greater at lower elevations. Average temperatures increase with elevation to 450 m during the ripening season as temperature inversions become more pronounced and persistent. Cool air descending from the Blue Mountains lowers average growing and ripening season temperatures at sites near major streams. Adiabatic warming of down-sloping prevailing winds increases average growing season and ripening season temperatures near the base of Vansycle Ridge. Grapevines planted below 300 m have a much greater risk of damage from frosts and freezes. Variations in vineyard ground surface materials have no apparent effect on ambient air temperatures as measured by radiation shielded data loggers at a height of 1.5 m

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Kevin R. POGUE and Gregory M. DERING

Department of Geology, Whitman College, Walla Walla, WA 99362 USA

Contact the author

Keywords

Walla Walla Valley, temperature, elevation, topography, growing degree-day

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

An operational model for capturing grape ripening dynamics to support harvest decisions

Grape ripening is a critical phenophase during which many metabolites driving wine quality are accumulated in berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices.

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.

Grapevine drought tolerant ideotypes to adapt viticulture to climate change

Climate change is challenging the resilience of grapevine, one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach that must include new management strategies, increased irrigation efficiency, and the identification of more drought tolerant genotypes.