Terroir 2008 banner
IVES 9 IVES Conference Series 9 Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

Abstract

The prospective study of the French wine sector (Sebillotte et al., 2004) has identified “groups of micro-scenarios” at the end of the analysis of the characteristics of this wine sector. These groups, which have been defined from correlations between ‘structural’ variables, are activated by ‘driving’ variables, which are supposed either to be active or not, define different pertinent micro-scenarios (MSc) of events which may reasonably occurr. Three of those groups are directly related to the production and the management of Terroir wines. 

References

These groups of micro-scenarios are: 
1) MSc2 group “Wine productions and funds market” which leads to 4 MSc: 
– “The New Viticultural World declines” 
– “Coexistence with terroir wines and industrial blended wines” 
– “The industrial blendings without Geographical Indication” 
– “The geographical Indication as a strategy for the New Viticultural World” 
2) MSc5 group “The quality marks of wine” which leads to 4 MSc: 
– “Aroma-enriched wines for wine bars” 
– “The consumption occasion as a quality mark” 
– “ ’Terra vitis’, aromas and environment” 
– “A vintage table wine which is marked ‘Veritas’ “ 
3) MSc8 group “ ‘AOC’, technical evolutions and labelling”: 
– “The AOC and the VQPRD refuse GMO which are accepted worldwide” 
– “The AOC integrates the technical evolutions without any limit” 
– “The GMO are little used, and marked according to bilateral agreements” 
– “In a viticultural world without GMO, the French AOC system is in question”. 
These diferrent events or MSc are analyzed through the various elements which are included in the Terroir concept, in order to estimate the direct practical implications into vineyards, and the adaptation or evolution ability of vineyards as well

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Alain CARBONNEAU, Hervé HANNIN

Montpellier SupAgro / IHEV

Contact the author

Keywords

grapevine, wine, prospective, scenario, geographical indication, terroir, controlled appellation of origin – ‘AOC’, finances, New Viticultural World, blended wine, quality, aroma, environment, certification, labelling, technics, Genetically Modified Organism 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effect of the shade generated by simulated solar panels in two row orientation on the physiology and productivity of Vitis vinifera L. cv. Malbec

Context and purpose of the study. In regions where grapevines are grown under irrigation, like most regions in Argentina, the wine industry should adopt more sustainable strategies and production systems towards a higher water use efficiency and a reduction in no-renewable energy consumption.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.

Grapevine, berry and soil Indicators to manage minimal irrigation strategy in semi-arid conditions: example of Grenache noir (Vitis vinifera L.)

Context and purpose of the study. Climate change in many Mediterranean wine-growing regions is resulting in lower rainfall and higher reference evapotranspiration, generally leading to reduced water availability for vines.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.