Terroir 2008 banner
IVES 9 IVES Conference Series 9 Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

Abstract

The prospective study of the French wine sector (Sebillotte et al., 2004) has identified “groups of micro-scenarios” at the end of the analysis of the characteristics of this wine sector. These groups, which have been defined from correlations between ‘structural’ variables, are activated by ‘driving’ variables, which are supposed either to be active or not, define different pertinent micro-scenarios (MSc) of events which may reasonably occurr. Three of those groups are directly related to the production and the management of Terroir wines. 

References

These groups of micro-scenarios are: 
1) MSc2 group “Wine productions and funds market” which leads to 4 MSc: 
– “The New Viticultural World declines” 
– “Coexistence with terroir wines and industrial blended wines” 
– “The industrial blendings without Geographical Indication” 
– “The geographical Indication as a strategy for the New Viticultural World” 
2) MSc5 group “The quality marks of wine” which leads to 4 MSc: 
– “Aroma-enriched wines for wine bars” 
– “The consumption occasion as a quality mark” 
– “ ’Terra vitis’, aromas and environment” 
– “A vintage table wine which is marked ‘Veritas’ “ 
3) MSc8 group “ ‘AOC’, technical evolutions and labelling”: 
– “The AOC and the VQPRD refuse GMO which are accepted worldwide” 
– “The AOC integrates the technical evolutions without any limit” 
– “The GMO are little used, and marked according to bilateral agreements” 
– “In a viticultural world without GMO, the French AOC system is in question”. 
These diferrent events or MSc are analyzed through the various elements which are included in the Terroir concept, in order to estimate the direct practical implications into vineyards, and the adaptation or evolution ability of vineyards as well

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Alain CARBONNEAU, Hervé HANNIN

Montpellier SupAgro / IHEV

Contact the author

Keywords

grapevine, wine, prospective, scenario, geographical indication, terroir, controlled appellation of origin – ‘AOC’, finances, New Viticultural World, blended wine, quality, aroma, environment, certification, labelling, technics, Genetically Modified Organism 

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.