Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Description of the effect of the practical management in the characterization of « terroir effect »

Description of the effect of the practical management in the characterization of « terroir effect »

Abstract

The characterization of « the soil effect » in vine growing is often limited to the description of the physical components of the terroir. Many works were done in this direction and corresponded to geological, pedological or agronomical approaches. However, if the physical environment influences the vine and its grapes, its effect becomes limited at the scale of exploitation. Thus, it could be important to consider how the viticulturist « translated » the potential. The object of this study is to assess the importance of the vine management in a study about the « terroir effect ». With a network of 14 plots representing 5 different soils, two approaches were carried out during the year 2005. An experimental approach with equivalent and controlled practices, and an approach where each winegrower applied a vine-management according to the type of wine that they wished to obtain. This experimentation had showed the influence of precocity and vigour, in interaction with the water status, in the characterization of the potentials. It had also highlighted a « unforeseeable » dimension in the construction of the product. This study had showed the importance for the characterization of « the terroir effect » to consider the vine management carried out by the viticulturists in a system in motion. Finally the limits of a physical and agronomic approach was discussed.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Nicolas BOTTOIS, Yves CADOT and Gérard BARBEAU

Unité Vigne et Vin, Institut National de la Recherche Agronomique, Centre de Recherches d’Angers,
42 rue Georges Morel, 49071 Beaucouzé Cedex, France

Contact the author

Keywords

vineyard terroir, Vitis vinifera, viticultural management, indicators of state of the vineyard

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

Opportunities and challenges in the adoption of new grape varieties by producers: A case study from the Northeastern United

Grape breeding for resistance to fungal diseases is today very dynamic throughout the world notably in France. New varieties are obtained by hybridization between susceptible varieties of the vitis vinifera species and resistant genotypes, with breeding programs generally lasting between 15 and 25 years and resulting in the registration of a few new varieties. Though these varieties can provide several benefits and can be planted by winegrowers, they are not always systematically adopted.

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007)

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

Which heat test really represents the haze risk of a white Sauvignon wine ?

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days)