Measurement of grape vine growth for model evaluation

Abstract

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004. The annual plant growth was measured by collecting non-perennial organs of 10 plants at 5 growth stages (pre-blossoming, setting, bunches closed, veraison, and ready for picking). The dry matter content of leaves, flower/grape clusters, shoots, side shoots, and tipping shoots was determined separately. Leaf area was measured before drying. At one vineyard site the plant fresh weight was additionally recorded. Simultaneously, soil water and Nmin content were analysed in soil samples taken from 0-30 and 30-60 cm soil depth.

The weather conditions during the investigation were extreme. At all sites the long-term annual mean temperature was exceeded by more than 1°C, during the growth period even by more than 3°C. In the same time precipitation delivered only about 60% of the long-term average. Drought occurred especially during the spring months. Vitis vinifera commonly reacts to drought by producing abscisine acid which causes a growth reduction of the vegetative plant organs. The generative parts remain less strongly affected. At two of the monitoring sites these effects could be observed as expected, while at the third site plant growth was not limited because of permanent supply of ground water in the rooting zone. At the sites limited in water supply the shoot dry matter production was reduced to up to 48% of the production observed in the years 1999-2001. Grape dry matter was only reduced to up to 59% of the earlier recorded amount. The data were used to parameterise the model to be able to reproduce plant growth under drought conditions. A clear improvement compared to the previous plant growth model version could be achieved. Now, the biomass development of the vine is a new feature in the output of the extended version of N-VINO 2.0 simulating the nitrogen turnover in vineyard soils and completes the output data of Nmin, soil water content, and N-leaching. The results can be presented in a time scale, in relation to soil depth, or as a comparison of measured data versus simulated data.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Claas NENDEL (1) and Stephan REUTER (2)

(1) Institute of Vegetable and Ornamental Crops, Department of Modelling and Knowledge Transfer, Theodor Echtermeyer-Weg 1, D-14979 Großbeeren, Germany
(2) Rhineland-Palatinate AgroScience, Institute for AgroEcology, Breitenweg 71, D-67435 Neustadt, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

SmartGrape: early detection of cicada-borne vine diseases using field spectroscopy and detection of volatile plant scents

Bois noir (BN) is a cicada-transmitted grapevine disease that today causes up to 50% yield and vine loss in vineyards. It is caused by the phytoplasma Candidatus Phytoplasma solani (16SrXII-A).

Fresh odorous terpenoids in wines, multiples pathways of limonene degradation.

Mint aromas in wine, which manifest as “cool” or “fresh” character, can originate from different chemical classes, one of which is the terpenoids. A broadly diverse, naturally occurring class of chemical compounds, terpenes possess wide applications across multiple industries due to their pharmaceutical, antiseptic, medical, and aromatic properties. Monoterpenes, a subclass of terpenoids, likewise play a major role in wine sensory perception. Within the monoterpenes, those possessing “mint” odor qualities have often been studied in the context of “vegetal” or “herbal” wine faults; however, their role in positive aromatic evolution is less understood. Yet an extensive 2015 study of older premium Bordeaux red wines identified mint as a contributing factor in quality bouquet development. From that point, it was necessary to investigate the origins of those monoterpenes as well as the chemical conditions required for their development during ageing. Those two key points could finally facilitate predicting the apparition of minty character in older wines based on their composition while young.
A principal contributor is the cyclic monoterpene limonene, which was isolated relatively early in grapes and wine. Not only does limonene itself possess a cool, fresh odor, it is also a precursor for, and possible derivative of, additional mint monoterpenes. Among the most commonly found monoterpenes, limonene and its derivatives can constitute the majority of the essential oils of citrus fruits, mint and herb plants, and coniferous trees. Many of these mint monoterpenes also occur in grapes and wine. With aromas ranging from woody and earthy to citrus to mint and herbaceous, their contribution to wine is potentially diverse and multi-faceted. While sometimes, found at concentrations below the sensory threshold, synergistic effects between these molecules could render them perceivable.
This review looks at limonene and its transformation as studied in different matrices, and potential parallels or analogues in wine. Moreover, within the complex kinetics of wine aging, the relative concentrations of mint monoterpenes appears to continue to evolve and change, with additional evidence from model wine solutions suggesting they may even revert to their originating precursors. Continued study of mint monoterpenes and their role in wine aromatics will contribute to a deeper understanding of the development of aging bouquet and the longevity of premium wines.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Red wines from southwest France, Lebanon and South Korea: study of phenolic composition and antioxidant and biological activities according to grape varieties and winemaking processes

The phenolic compounds present in the wine are responsible for reducing the risk of developing chronic diseases (cardiovascular, cancer, diabetes, Alzheimer …) because of their antioxidant activities and the presence of nutraceutical molecules with targeted biological activities. Polyphenols not only contribute to the “French paradox” but also contribute to give the wine its color, structure, aroma and allow a long-term preservation.