Measurement of grape vine growth for model evaluation

Abstract

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004. The annual plant growth was measured by collecting non-perennial organs of 10 plants at 5 growth stages (pre-blossoming, setting, bunches closed, veraison, and ready for picking). The dry matter content of leaves, flower/grape clusters, shoots, side shoots, and tipping shoots was determined separately. Leaf area was measured before drying. At one vineyard site the plant fresh weight was additionally recorded. Simultaneously, soil water and Nmin content were analysed in soil samples taken from 0-30 and 30-60 cm soil depth.

The weather conditions during the investigation were extreme. At all sites the long-term annual mean temperature was exceeded by more than 1°C, during the growth period even by more than 3°C. In the same time precipitation delivered only about 60% of the long-term average. Drought occurred especially during the spring months. Vitis vinifera commonly reacts to drought by producing abscisine acid which causes a growth reduction of the vegetative plant organs. The generative parts remain less strongly affected. At two of the monitoring sites these effects could be observed as expected, while at the third site plant growth was not limited because of permanent supply of ground water in the rooting zone. At the sites limited in water supply the shoot dry matter production was reduced to up to 48% of the production observed in the years 1999-2001. Grape dry matter was only reduced to up to 59% of the earlier recorded amount. The data were used to parameterise the model to be able to reproduce plant growth under drought conditions. A clear improvement compared to the previous plant growth model version could be achieved. Now, the biomass development of the vine is a new feature in the output of the extended version of N-VINO 2.0 simulating the nitrogen turnover in vineyard soils and completes the output data of Nmin, soil water content, and N-leaching. The results can be presented in a time scale, in relation to soil depth, or as a comparison of measured data versus simulated data.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Claas NENDEL (1) and Stephan REUTER (2)

(1) Institute of Vegetable and Ornamental Crops, Department of Modelling and Knowledge Transfer, Theodor Echtermeyer-Weg 1, D-14979 Großbeeren, Germany
(2) Rhineland-Palatinate AgroScience, Institute for AgroEcology, Breitenweg 71, D-67435 Neustadt, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Potential use of the yeast Starmerella bacillaris as a sustainable biocontrol agent against gray mold disease in viticulture

Pest biocontrol strategies are gaining attention as eco-friendly alternatives to the use of synthetic pesticides, including in viticulture.

The Pampa and the vineyard: gaucho´s natural and symbolic aspects in the identity´s constitution of “Vinhos da Campanha”’s terroir – RS/Brasil

The wine region of “Vinhos da Campanha” is located in southern Brazil, on the Uruguay borderline. The colonization’s process in the region was characterized by territorial disputes between Portuguese

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.

TerraClim, an online spatial decision support system for the wine industry

Climate projections for the future suggest favourable conditions for some wine producing regions, but challenging conditions for others. For instance, temperature increases are likely to shift grapevine phenology, ripening and harvest dates, and potentially affect grape quality and yield.