Measurement of grape vine growth for model evaluation

Abstract

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004. The annual plant growth was measured by collecting non-perennial organs of 10 plants at 5 growth stages (pre-blossoming, setting, bunches closed, veraison, and ready for picking). The dry matter content of leaves, flower/grape clusters, shoots, side shoots, and tipping shoots was determined separately. Leaf area was measured before drying. At one vineyard site the plant fresh weight was additionally recorded. Simultaneously, soil water and Nmin content were analysed in soil samples taken from 0-30 and 30-60 cm soil depth.

The weather conditions during the investigation were extreme. At all sites the long-term annual mean temperature was exceeded by more than 1°C, during the growth period even by more than 3°C. In the same time precipitation delivered only about 60% of the long-term average. Drought occurred especially during the spring months. Vitis vinifera commonly reacts to drought by producing abscisine acid which causes a growth reduction of the vegetative plant organs. The generative parts remain less strongly affected. At two of the monitoring sites these effects could be observed as expected, while at the third site plant growth was not limited because of permanent supply of ground water in the rooting zone. At the sites limited in water supply the shoot dry matter production was reduced to up to 48% of the production observed in the years 1999-2001. Grape dry matter was only reduced to up to 59% of the earlier recorded amount. The data were used to parameterise the model to be able to reproduce plant growth under drought conditions. A clear improvement compared to the previous plant growth model version could be achieved. Now, the biomass development of the vine is a new feature in the output of the extended version of N-VINO 2.0 simulating the nitrogen turnover in vineyard soils and completes the output data of Nmin, soil water content, and N-leaching. The results can be presented in a time scale, in relation to soil depth, or as a comparison of measured data versus simulated data.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Claas NENDEL (1) and Stephan REUTER (2)

(1) Institute of Vegetable and Ornamental Crops, Department of Modelling and Knowledge Transfer, Theodor Echtermeyer-Weg 1, D-14979 Großbeeren, Germany
(2) Rhineland-Palatinate AgroScience, Institute for AgroEcology, Breitenweg 71, D-67435 Neustadt, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

Stabulation (lees stirring) in must as a method for aroma intensification: A comparison with skin contact and a classical version of Traminer and Sauvignon blanc in Austria

In the course of this study, stabilisation (lees stirring in unclarified must) with skin contact and classic white wine vinification were compared for the Sauvignon blanc and Traminer varieties in Austria. The test wines were analysed for the volatile substances esters, free monoterpenes and fruity thiols

An efficient protocol for long-term maintenance of embryogenic calluses of Vitis vinifera

New breeding techniques (NBTS) could play a significant role in the genetic improvement of grapevine by producing new grape varieties with improved quantitative and qualitative characteristics. However, the application of these new techniques faces some technical challenges. One of the challenges is the generation of embryogenic calluses, which are not only difficult to obtain but it is also difficult to maintain their competence during in vitro cultivation, and thus regenerate plants without defects.

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges.