Measurement of grape vine growth for model evaluation

Abstract

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004. The annual plant growth was measured by collecting non-perennial organs of 10 plants at 5 growth stages (pre-blossoming, setting, bunches closed, veraison, and ready for picking). The dry matter content of leaves, flower/grape clusters, shoots, side shoots, and tipping shoots was determined separately. Leaf area was measured before drying. At one vineyard site the plant fresh weight was additionally recorded. Simultaneously, soil water and Nmin content were analysed in soil samples taken from 0-30 and 30-60 cm soil depth.

The weather conditions during the investigation were extreme. At all sites the long-term annual mean temperature was exceeded by more than 1°C, during the growth period even by more than 3°C. In the same time precipitation delivered only about 60% of the long-term average. Drought occurred especially during the spring months. Vitis vinifera commonly reacts to drought by producing abscisine acid which causes a growth reduction of the vegetative plant organs. The generative parts remain less strongly affected. At two of the monitoring sites these effects could be observed as expected, while at the third site plant growth was not limited because of permanent supply of ground water in the rooting zone. At the sites limited in water supply the shoot dry matter production was reduced to up to 48% of the production observed in the years 1999-2001. Grape dry matter was only reduced to up to 59% of the earlier recorded amount. The data were used to parameterise the model to be able to reproduce plant growth under drought conditions. A clear improvement compared to the previous plant growth model version could be achieved. Now, the biomass development of the vine is a new feature in the output of the extended version of N-VINO 2.0 simulating the nitrogen turnover in vineyard soils and completes the output data of Nmin, soil water content, and N-leaching. The results can be presented in a time scale, in relation to soil depth, or as a comparison of measured data versus simulated data.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Claas NENDEL (1) and Stephan REUTER (2)

(1) Institute of Vegetable and Ornamental Crops, Department of Modelling and Knowledge Transfer, Theodor Echtermeyer-Weg 1, D-14979 Großbeeren, Germany
(2) Rhineland-Palatinate AgroScience, Institute for AgroEcology, Breitenweg 71, D-67435 Neustadt, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Influence of different strains of lab on quality of catarratto wine produced in sicily

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2].

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.

La vinificación de las uvas aromáticas: Moscateles y Malvasías

Las uvas aromáticas se pueden dividir en dos clases, Moscateles y Malvasías, dependiendo del hecho de que el linalol o el geraniol, respectivamente, sean los alcoholes terpénicos monohidroxilados que

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

Application to the wine sector of European Convention on the landscapes

The landscape is defined by the European convention of the landscape (Florence, October 20, 2000) like part of the territory as perceived by the populations, whose character results from the action of natural and/or human factors and their interrelationships. This convention is based on the contribution cultural, ecological, environmental, social of the landscapes and aims at a reinforcement of the tools of protection and valorization in particular in the agricultural policies, of regional planning and town planning. Moreover, it encourages a step of identification and qualification of the landscapes and underlines the need for developing the sensitizing and the training of the actors concerned.