Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Measurement of grape vine growth for model evaluation

Measurement of grape vine growth for model evaluation

Abstract

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004. The annual plant growth was measured by collecting non-perennial organs of 10 plants at 5 growth stages (pre-blossoming, setting, bunches closed, veraison, and ready for picking). The dry matter content of leaves, flower/grape clusters, shoots, side shoots, and tipping shoots was determined separately. Leaf area was measured before drying. At one vineyard site the plant fresh weight was additionally recorded. Simultaneously, soil water and Nmin content were analysed in soil samples taken from 0-30 and 30-60 cm soil depth.

The weather conditions during the investigation were extreme. At all sites the long-term annual mean temperature was exceeded by more than 1°C, during the growth period even by more than 3°C. In the same time precipitation delivered only about 60% of the long-term average. Drought occurred especially during the spring months. Vitis vinifera commonly reacts to drought by producing abscisine acid which causes a growth reduction of the vegetative plant organs. The generative parts remain less strongly affected. At two of the monitoring sites these effects could be observed as expected, while at the third site plant growth was not limited because of permanent supply of ground water in the rooting zone. At the sites limited in water supply the shoot dry matter production was reduced to up to 48% of the production observed in the years 1999-2001. Grape dry matter was only reduced to up to 59% of the earlier recorded amount. The data were used to parameterise the model to be able to reproduce plant growth under drought conditions. A clear improvement compared to the previous plant growth model version could be achieved. Now, the biomass development of the vine is a new feature in the output of the extended version of N-VINO 2.0 simulating the nitrogen turnover in vineyard soils and completes the output data of Nmin, soil water content, and N-leaching. The results can be presented in a time scale, in relation to soil depth, or as a comparison of measured data versus simulated data.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Claas NENDEL (1) and Stephan REUTER (2)

(1) Institute of Vegetable and Ornamental Crops, Department of Modelling and Knowledge Transfer, Theodor Echtermeyer-Weg 1, D-14979 Großbeeren, Germany
(2) Rhineland-Palatinate AgroScience, Institute for AgroEcology, Breitenweg 71, D-67435 Neustadt, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

Historical zoning in the world

The study of the interaction between vineyards and the environment to establish the grapevines in the appropriate places has been applied in wine science for 5000 years. Advances in the field of the zoning have not been uniform in time, and have occupied a preferential place in the contributions of Roman writers of the 1st Century AC, the contemplations of Tokay (1700) and Porto (1756) and works of the second half of the 20th century. Zoning practices today integrate multidisciplinary methodologies (viticulture, enology, soils, climatology, cartography, statistics, computer science) and require further development for future application.

Callinikos: the new white table grapeseedless variety for biological produce

This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.