Terroir 2006 banner
IVES 9 IVES Conference Series 9 Geological characterization of plot belonging to the left bank terraces terroir of the Gaillac vineyard (Tarn, Midi-Pyrénées). Consequences on determination of choice of vegetative material

Geological characterization of plot belonging to the left bank terraces terroir of the Gaillac vineyard (Tarn, Midi-Pyrénées). Consequences on determination of choice of vegetative material

Abstract

Detailed geological analyses of a plot belonging to the « AOC Gaillac » area have been carried out. This plot belongs to the left bank terraces of the Tarn River which coinciding with one of the three main terroirs of the AOC area. It is localised on the rissian-aged (≈ 200 000 yrs B.P.) terrace composed of alluvial shelves crosscut by small valleys where the Oligocene (ca. 28 My) marly molassic basement outcrops. It spatially coincides with the terrace slope on which typical luvisols have developed composed by an eluvial silty-sandy horizon (up to 60 cm) overlying an illuvial pebble-sand level (up to 3 m) where clays and ferrous oxides are moderately accumulated. The slope terrace appears to be a unit with great potential for production of high quality wine because of its high topographic gradient combined with the thick permeable pebble-sand sequence, both triggering a high drainage coefficient. Further, combination of physical and chemical results – acidic pH and very low CEC – permits to select Gravesac rootstock adapted to well-drained acidic soils and Syrah/Fer Servadou climatic-adapted grapevine varieties as the most suitable vegetative material.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Pierre COURJAULT-RADE (1), Marguerite MUNOZ (1), Eric MAIRE (1) and Nicolas HIRISSOU (2)

(1) Laboratoire des Mécanismes de Transferts en Géologie (LMTG), UMR 5563 CNRS, 14, avenue E. Belin, 31400 Toulouse, France
(2) Domaine du Moulin, chemin de Bastié, 81600 Gaillac, France

Contact the author

Keywords

AOC Gaillac, geology, morphology, vegetative material, terroir effect

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.  

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions.

Développer des outils simples pour accompagner les viticulteurs dans leurs changements de pratiques et répondre aux enjeux du siècle à venir

French viticulture is currently facing major challenges as it enters the new century: climate change, the need to reduce inputs, societal issues, changing consumer habits, labor shortages …. Vinopôle bordeaux-aquitaine, to which the teams from the chambre d’agriculture de la gironde belong, supports winegrowers of the gironde and bergerac-duras regions in the gradual evolution of their practices.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.