Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization of vine vigor by ground based NDVI measurements

Characterization of vine vigor by ground based NDVI measurements

Abstract

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex. Recently, N-Tech Industries in collaboration with Oklahoma State University developed a ground sensing apparatus, the GreenSeekerTM, which measures the NDVI.
In this study, the GreenSeekerTM, active sensor, is shown to function independently of the climatic conditions when it is used with a screen. The NDVI delivered by the GreenSeekerTM is mainly sensitive to the variations of porosity of the foliage. However, it can be used to carry out a follow-up of the foliar growth of the vine, but with much of precautions. Linked to a GPS, it makes it ple to chart relative variations of vigor at an intraplot level.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

J.P. GOUTOULY (1), R. DRISSI (1), D. FORGET (2) and J.P. GAUDILLÈRE (1)

(1) INRA, UMR Œnologie-Ampélologie Équipe Écophysiologie and Agronomie Viticole
71, avenue Edouard-Bourlaux B.P.81, 33883 Villenave d’Ornon cedex, France
(2) INRA, Domaine expérimental viticole de Couhins, 33883 Villenave d’Ornon cedex, France

Contact the author

Keywords

Vitis vinifera, remote sensing, GreenSeekerTM, NDVI / LAI

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

A deep learning object detection approach for smart pest identification in vineyards

Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, Scaphoideus titanus, serving as the primary vector.

New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

wo spectrophotometric methods are recommended by the Organisation Internationale de la vigne et du vin (OIV). The first is the method after Glories, were the absorbances at 420 nm, 520 nm and 620 nm are measured (OIV 2006a).

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.

Transition metals and light-dependent reactions: application of a response surface methodology approach

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST).