Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization of vine vigor by ground based NDVI measurements

Characterization of vine vigor by ground based NDVI measurements

Abstract

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex. Recently, N-Tech Industries in collaboration with Oklahoma State University developed a ground sensing apparatus, the GreenSeekerTM, which measures the NDVI.
In this study, the GreenSeekerTM, active sensor, is shown to function independently of the climatic conditions when it is used with a screen. The NDVI delivered by the GreenSeekerTM is mainly sensitive to the variations of porosity of the foliage. However, it can be used to carry out a follow-up of the foliar growth of the vine, but with much of precautions. Linked to a GPS, it makes it ple to chart relative variations of vigor at an intraplot level.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

J.P. GOUTOULY (1), R. DRISSI (1), D. FORGET (2) and J.P. GAUDILLÈRE (1)

(1) INRA, UMR Œnologie-Ampélologie Équipe Écophysiologie and Agronomie Viticole
71, avenue Edouard-Bourlaux B.P.81, 33883 Villenave d’Ornon cedex, France
(2) INRA, Domaine expérimental viticole de Couhins, 33883 Villenave d’Ornon cedex, France

Contact the author

Keywords

Vitis vinifera, remote sensing, GreenSeekerTM, NDVI / LAI

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

Can minimal pruning be a strategy to adapt grape ripening to global warming?

Berry maturation in warm areas takes place very early, when temperatures are still high and favorable for carbohydrate synthesis and accumulation in the berries, but not as favorable for maintaining high titratable acidity or low pH, or for increasing berry polyphenol content. Different canopy management techniques have been proven to delay berry maturation at the expense of yield (severe canopy trimming, late spring pruning to induce sprouting of dormant buds, etc.). Minimal pruning delays berry ripening by highly increasing yield and by reducing the leaf area to fruit ratio.

Phytochemical composition of Artemisia absinthium L.

Absinthe is historically described as a distilled, highly alcoholic beverage. It is an anise-flavoured spirit derived from botanicals, including the flowers and leaves of Artemisia absinthium L. (“grand wormwood”), together with green anise, sweet fennel, and other medicinal and culinary herbs.

Response of different grapevine cultivars to water stress using a hydroscape approach

Viticulture worldwide is currently affected by the effects of climate change. This set of adverse phenomena lead to a deterioration of functional vine mechanisms, affecting growth, physiology and grape ripening, which may cause severe losses with respect to yield and quality. To prevent water stress and other abiotic factors from severely affecting its physiology, the vine’s response is to reduce transpiration and photosynthesis rates. This response varies depending on the cultivar and its ability to adapt to the environment. The hydroscape method is based on the internal regulation of water status in the plant. It has been recently used to classify grapevine genotypes according to their iso/anisohydric behavior when they are subjected to water stress conditions.