Terroir 2006 banner
IVES 9 IVES Conference Series 9 Grape ripening timing as a base for viticultural zoning: an agro-ecological approach

Grape ripening timing as a base for viticultural zoning: an agro-ecological approach

Abstract

Due to the central role of the ripening timing in the evaluation of the varietal response to the environmental resources, a method to manage maturation curves has been developed. The method produces an index of veraison precocity and overcomes several methodological problems, like the visual evaluation of the veraison point and the multi-annual and multi-varieties data processing. It is based on a statistical and mathematical processing of the sugar ripening curves. The index resulted satisfactory correlated with flowering time and sugar level at vintage, it allowed to study the effects of environmental resources on the timing of ripening and to classify the vineyards, and the relative land units, into homogeneous groups for what concerns precocity of veraison. For these reasons it demonstrated to be useful for zoning projects.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Osvaldo FAILLA, Lucio BRANCADORO, Luca TONINATO and Attilio SCIENZA

Dipartimento di Produzione Vegetale, Università degli Studi, via Celoria 2, Milano, Italy

Contact the author

Keywords

grapevine, ripening, zoning

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Optimization of aroma production in grape cell suspensions induced by chemical elicitor

Methyl-jasmonate (MeJA) induces the production of at least 25 compounds with sesquiterpene- like mass spectra in ‘Cabernet sauvignon’. Tost effective concentration of MeJA in stimulating the production of sesquiterpenes was found to be 500 µM if added when the cell suspensions had a PCV of 35 %, and 1000 if added when the cell suspensions had a PCV of 70 %.

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.  

Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

The Spotted lanternfly (SLF), first detected in the U.S. in 2014, is an invasive phloem-feeding planthopper that poses a growing threat to grape and wine production in the U.S. In Pennsylvania, where it was first detected, reductions in grapevine production and fruit quality have been reported by commercial growers. Recent advances have begun to elucidate how SLF affects grapevine physiology and resource allocation, but no research has identified how SLF affects wine chemical composition and quality. Documented reductions in fruit sugar allocation due to heavy SLF phloem-feeding may have downstream effects on wine fermentation dynamics. Additionally, secondary metabolic responses stimulated by SLF may also influence berry chemical composition. The present study investigated SLF-mediated effects on wine composition through analysis of the volatile composition of wines produced from white- and red-fruited varieties of different Vitis parentage (e.g., Vitis vinifera vs. interspecific hybrids) following prolonged exposure to adult SLF phloem-feeding.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.