Terroir 2006 banner
IVES 9 IVES Conference Series 9 High resolution remote sensing for mapping intra-block vine vigour heterogeneity

High resolution remote sensing for mapping intra-block vine vigour heterogeneity

Abstract

In vineyard management, the block is considered today as the technical work unit. However, considerable variability can exist inside a block with regard to physiological parameters, such as vigour, particularly because of soil heterogeneity. To represent this variability spatially, many measurements have to be taken, which is costly in both time and money. High resolution remote sensing appears to be an efficient tool for mapping intra-block heterogeneity. A vegetation index, the Normalized Difference Vegetative Index (NDVI), calculated with red and near infrared leaf reflectance can be used as a vine vigour indicator. Because of the cultivation of vines in rows, a specific image treatment is needed. Only high resolution remote sensing (pixels less than 20 cm per side) allows the discrimination between row pixels and inter-row ones. The significant correlation between NDVI and pruning weight and the possibility to map the vigour with the NDVI by means of high resolution remote sensing, show the ability of NDVI to assess intra-block variations of vine vigour.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Elisa MARGUERIT (1), Anne-Marie COSTA FERREIRA (1), Cloé AZAÏS, Jean-Philippe ROBY (1), Jean-Pascal GOUTOULY (2), Christian GERMAIN (1), Saeid HOMAYOUNI (1) and Cornelis Van LEEUWEN (1)

(1) ENITA de Bordeaux, 1 cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex, France
(2) INRA de Bordeaux, Domaine de la Grande Ferrade, 71, avenue Édouard Bourlaux B.P. 81, 33 883 Villenave d’Ornon cedex, France

Contact the author

Keywords

vine, Vitis vinifera L., remote sensing, high resolution, pruning weight, NDVI

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Applications of Infrared Spectroscopy from laboratory to industry

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Grapevine genotypes with potential for reducing the carbon footprint in the atmosphere and cultivation in a biological system

The concentration of CO2 in the atmosphere is increasing from year to year. Taking into account the calculations of the greenhouse gas inventory, it was found that approximately 70% of CO2 in the atmosphere is absorbed by vegetation (forests, agricultural land, etc.).