Terroir 2006 banner
IVES 9 IVES Conference Series 9 High resolution remote sensing for mapping intra-block vine vigour heterogeneity

High resolution remote sensing for mapping intra-block vine vigour heterogeneity

Abstract

In vineyard management, the block is considered today as the technical work unit. However, considerable variability can exist inside a block with regard to physiological parameters, such as vigour, particularly because of soil heterogeneity. To represent this variability spatially, many measurements have to be taken, which is costly in both time and money. High resolution remote sensing appears to be an efficient tool for mapping intra-block heterogeneity. A vegetation index, the Normalized Difference Vegetative Index (NDVI), calculated with red and near infrared leaf reflectance can be used as a vine vigour indicator. Because of the cultivation of vines in rows, a specific image treatment is needed. Only high resolution remote sensing (pixels less than 20 cm per side) allows the discrimination between row pixels and inter-row ones. The significant correlation between NDVI and pruning weight and the possibility to map the vigour with the NDVI by means of high resolution remote sensing, show the ability of NDVI to assess intra-block variations of vine vigour.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Elisa MARGUERIT (1), Anne-Marie COSTA FERREIRA (1), Cloé AZAÏS, Jean-Philippe ROBY (1), Jean-Pascal GOUTOULY (2), Christian GERMAIN (1), Saeid HOMAYOUNI (1) and Cornelis Van LEEUWEN (1)

(1) ENITA de Bordeaux, 1 cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex, France
(2) INRA de Bordeaux, Domaine de la Grande Ferrade, 71, avenue Édouard Bourlaux B.P. 81, 33 883 Villenave d’Ornon cedex, France

Contact the author

Keywords

vine, Vitis vinifera L., remote sensing, high resolution, pruning weight, NDVI

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.