Terroir 2006 banner
IVES 9 IVES Conference Series 9 High resolution remote sensing for mapping intra-block vine vigour heterogeneity

High resolution remote sensing for mapping intra-block vine vigour heterogeneity

Abstract

In vineyard management, the block is considered today as the technical work unit. However, considerable variability can exist inside a block with regard to physiological parameters, such as vigour, particularly because of soil heterogeneity. To represent this variability spatially, many measurements have to be taken, which is costly in both time and money. High resolution remote sensing appears to be an efficient tool for mapping intra-block heterogeneity. A vegetation index, the Normalized Difference Vegetative Index (NDVI), calculated with red and near infrared leaf reflectance can be used as a vine vigour indicator. Because of the cultivation of vines in rows, a specific image treatment is needed. Only high resolution remote sensing (pixels less than 20 cm per side) allows the discrimination between row pixels and inter-row ones. The significant correlation between NDVI and pruning weight and the possibility to map the vigour with the NDVI by means of high resolution remote sensing, show the ability of NDVI to assess intra-block variations of vine vigour.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Elisa MARGUERIT (1), Anne-Marie COSTA FERREIRA (1), Cloé AZAÏS, Jean-Philippe ROBY (1), Jean-Pascal GOUTOULY (2), Christian GERMAIN (1), Saeid HOMAYOUNI (1) and Cornelis Van LEEUWEN (1)

(1) ENITA de Bordeaux, 1 cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex, France
(2) INRA de Bordeaux, Domaine de la Grande Ferrade, 71, avenue Édouard Bourlaux B.P. 81, 33 883 Villenave d’Ornon cedex, France

Contact the author

Keywords

vine, Vitis vinifera L., remote sensing, high resolution, pruning weight, NDVI

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

La viticoltura veneta in un contesto di città e industria diffusa: per una lettura integrale del paesaggio della collina pedemontana veronese orientale

l Veneto, come è noto, rappresenta una delle estensioni di superfici a vigneto più importanti in Italia e nell’Europa stessa. Il paesaggio viticolo fino ad oggi è stato ampiamente letto nelle sue componenti

An online training tool for wine professionals around the world: from responsible service to a sustainable consumption of wine

Most consumers enjoy wine in moderation, however, there remains a minority that may develop risky drinking habits, potentially harming themselves and those around them. For the last fifteen years, a prime objective of the wine in moderation programme has been to educate and empower the wine sector and now for the first time, a central education tool has been developed, integrating the topic of moderate consumption horizontally in all wine activities. The entire wine value chain – from the producer to the salesperson to the restaurant service staff – can contribute to reduce harmful consumption and encourage responsible drinking patterns.

Study of the interactions between wine anthocyanins and proline rich proteins

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.