Terroir 2006 banner
IVES 9 IVES Conference Series 9 High resolution remote sensing for mapping intra-block vine vigour heterogeneity

High resolution remote sensing for mapping intra-block vine vigour heterogeneity

Abstract

In vineyard management, the block is considered today as the technical work unit. However, considerable variability can exist inside a block with regard to physiological parameters, such as vigour, particularly because of soil heterogeneity. To represent this variability spatially, many measurements have to be taken, which is costly in both time and money. High resolution remote sensing appears to be an efficient tool for mapping intra-block heterogeneity. A vegetation index, the Normalized Difference Vegetative Index (NDVI), calculated with red and near infrared leaf reflectance can be used as a vine vigour indicator. Because of the cultivation of vines in rows, a specific image treatment is needed. Only high resolution remote sensing (pixels less than 20 cm per side) allows the discrimination between row pixels and inter-row ones. The significant correlation between NDVI and pruning weight and the possibility to map the vigour with the NDVI by means of high resolution remote sensing, show the ability of NDVI to assess intra-block variations of vine vigour.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Elisa MARGUERIT (1), Anne-Marie COSTA FERREIRA (1), Cloé AZAÏS, Jean-Philippe ROBY (1), Jean-Pascal GOUTOULY (2), Christian GERMAIN (1), Saeid HOMAYOUNI (1) and Cornelis Van LEEUWEN (1)

(1) ENITA de Bordeaux, 1 cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex, France
(2) INRA de Bordeaux, Domaine de la Grande Ferrade, 71, avenue Édouard Bourlaux B.P. 81, 33 883 Villenave d’Ornon cedex, France

Contact the author

Keywords

vine, Vitis vinifera L., remote sensing, high resolution, pruning weight, NDVI

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Early Elgo Demetra: the new pink table variety seedless with big berry and resistant

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new pink “Early Elgo Demetra” variety.

El medio natural de Chile como factor de adaptación de la vid

Chile, junto con Australia, EE.UU., Sudáfrica, Argentina y Nueva Zelanda constituye el grupo de países del nuevo mundo vitivinícola. Todos ellos en conjunto han experimentado en la última década

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Second pruning as a strategy to delay maturation in cv. ‘Touriga nacional’ in the Portuguese Douro region

The advance in maturation of wine grapes is an important climate change risk related effect that could affect warm regions like Portuguese Douro Wine Region. Indeed, the climate analysis over the past years registered a decrease in the precipitation, significant higher average temperatures, and a more frequent occurrence of extreme weather events, including heat waves. In these conditions the length from anthesis until maturation is shortened and the uncoupling of technical and phenolic maturity results in berries with higher sugar concentration (and lower acidity), but lower anthocyanins, tannins, and total phenolic concentration, which produce unbalanced wines.
In this work, an innovative strategy of crop forcing, based on forcing vine regrowth after a second pruning of green shoots, was tested, aimed at delaying ripening until the temperature becomes lower and, therefore, preventing acidity loss and increasing anthocyanin-to-sugar ratio. The experiments were conducted in 2019 and 2020 in a commercial vineyard of ‘Touriga Nacional’ located in the Douro Region. Crop forcing was conducted 15 (CF1) to 30 (CF2) days after fruit set. Vines pruned with conventional methods were used as control (CF0). Results confirmed that fruit ripening was shifted from the hot season (August/September), until a cooler period (October through early-November). At harvest, grapevine berries from CF1 and CF2 presented lower pH and higher acidity, than control, with no significant differences in colour intensity and phenolic levels composition. Sugar content was lower in CF2-treated vines in both seasons. However, in CF-treated vines the number and size of clusters were significantly lower (up to 88% reduction) than in control plants. A metabolomics analysis of mature berries from CF-treated vines and control is underway. Crop forcing was indeed effective in producing a more balance berry composition but severely reduced grapevine yield,