Terroir 2006 banner
IVES 9 IVES Conference Series 9 High resolution remote sensing for mapping intra-block vine vigour heterogeneity

High resolution remote sensing for mapping intra-block vine vigour heterogeneity

Abstract

In vineyard management, the block is considered today as the technical work unit. However, considerable variability can exist inside a block with regard to physiological parameters, such as vigour, particularly because of soil heterogeneity. To represent this variability spatially, many measurements have to be taken, which is costly in both time and money. High resolution remote sensing appears to be an efficient tool for mapping intra-block heterogeneity. A vegetation index, the Normalized Difference Vegetative Index (NDVI), calculated with red and near infrared leaf reflectance can be used as a vine vigour indicator. Because of the cultivation of vines in rows, a specific image treatment is needed. Only high resolution remote sensing (pixels less than 20 cm per side) allows the discrimination between row pixels and inter-row ones. The significant correlation between NDVI and pruning weight and the possibility to map the vigour with the NDVI by means of high resolution remote sensing, show the ability of NDVI to assess intra-block variations of vine vigour.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Elisa MARGUERIT (1), Anne-Marie COSTA FERREIRA (1), Cloé AZAÏS, Jean-Philippe ROBY (1), Jean-Pascal GOUTOULY (2), Christian GERMAIN (1), Saeid HOMAYOUNI (1) and Cornelis Van LEEUWEN (1)

(1) ENITA de Bordeaux, 1 cours du Général de Gaulle, CS 40201, 33175 Gradignan cedex, France
(2) INRA de Bordeaux, Domaine de la Grande Ferrade, 71, avenue Édouard Bourlaux B.P. 81, 33 883 Villenave d’Ornon cedex, France

Contact the author

Keywords

vine, Vitis vinifera L., remote sensing, high resolution, pruning weight, NDVI

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Study of grape plant behaviour (cv. Chasselas) on various “terroirs” of the Vaud county (Switzerland)

L’étude du comportement physiologique et agronomique de la vigne (cv. Chasselas) a été réalisée en 2001 par la Station fédérale de recherches en production végétale de Changins sur divers terroirs viticoles vaudois (Suisse), dans le cadre d’un projet d’étude des terroirs viticoles vaudois en collaboration avec le bureau I LETESSIER (SIGALES) à Grenoble et l’École polytechnique fédérale de Lausanne (EPFL).

Terroir zoning in appellation campo de borja (northeast Spain): Preliminary results

The components and methodology for characterization of the terroir have been described by Gómez-Miguel & Sotés (1993-2014, 2003) and Gómez-Miguel (2011) taking into account the full range of environmental factors (i.e: climate, lithology, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and specific variables to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.).

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Rosé wine consumption is rapidly increasing with its market share in France that has grown from 11 % to 32 % in less than 20 years. A recent trend is also to produce rosé wines with lighter colors. Varieties, terroir and technology certainly have an influence on rosé wine colors.

Vitamin content of grape musts and yeast nutrition: A review

The management of yeast nutrition is an essential approach for a better control over wine fermentation process. Most of the researches on this subject in the last decades focused on nitrogen nutrition. However, vitamins, while being key compounds for yeast metabolism as co-factors for numerous enzymatic activities, were left mostly unexplored.