Terroir 2006 banner
IVES 9 IVES Conference Series 9 Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

Abstract

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

A Soil Information System stored geography (reference scale 1:100,000) and attributes of i) land cover, ii) lithology, iii) morphology, iv) soil typologies, v) soil properties, vi) soil geography, vii) long term average Winkler bioclimatic index and average rainfall, and viii) appellation of origin area, of the whole Province of Siena. Soil functional properties were selected and classified after a statistical analysis of the relationships with the viticultural and oenological results obtained in 69 vineyards over a time span of 2-5 years. All the vineyards of the province were grouped in terms of lithology, morphology, and soil functional properties, so as to create homogeneous UTR. The result was that the whole province was characterized by 363 UTR, which covered a total of 16,650 ha, each UTR having a size ranging from 2 to 474 ha. The GIS map highlighted and explained the environmental diversity of viticultural areas of the province, providing information about peculiarities, constraints and potentialities of each UTR.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Roberto BARBETTI (1), Giovanni L’ABATE (1), Pierluigi BUCELLI (1), Sergio PELLEGRINI (1) and Paolo STORCHI (2)

Contact the author

Keywords

terroir, reconnaissance, Sangiovese, database, Siena

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.

Comportement hydrique des sols viticoles et leur influence sur le terroir

L’étude des relations Terroir – Vigne – Raisin est complexe. La recherche et le développement des facteurs qualitatifs qui influencent le caractère des vins sont multiples. Divers travaux mettent en évidence la relation entre l’alimentation en eau de la plante, son développement végétatif et les caractéristiques de ses raisins.