Terroir 2006 banner
IVES 9 IVES Conference Series 9 Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

Abstract

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

A Soil Information System stored geography (reference scale 1:100,000) and attributes of i) land cover, ii) lithology, iii) morphology, iv) soil typologies, v) soil properties, vi) soil geography, vii) long term average Winkler bioclimatic index and average rainfall, and viii) appellation of origin area, of the whole Province of Siena. Soil functional properties were selected and classified after a statistical analysis of the relationships with the viticultural and oenological results obtained in 69 vineyards over a time span of 2-5 years. All the vineyards of the province were grouped in terms of lithology, morphology, and soil functional properties, so as to create homogeneous UTR. The result was that the whole province was characterized by 363 UTR, which covered a total of 16,650 ha, each UTR having a size ranging from 2 to 474 ha. The GIS map highlighted and explained the environmental diversity of viticultural areas of the province, providing information about peculiarities, constraints and potentialities of each UTR.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Roberto BARBETTI (1), Giovanni L’ABATE (1), Pierluigi BUCELLI (1), Sergio PELLEGRINI (1) and Paolo STORCHI (2)

Contact the author

Keywords

terroir, reconnaissance, Sangiovese, database, Siena

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

The representation of the vines: from symbol to spectacle

Landscapes such as its representation express values, beliefs and intentions of the individuals and the communities that produce them.

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.