Terroir 2006 banner
IVES 9 IVES Conference Series 9 Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Abstract

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements. Sensor readings are used to make precise estimations of soil texture, compaction, moisture and resistivity in the field. The probe reaches a depth of 1.2 to 1.5 meters. The data obtained are used to construct thematic maps, such as soil texture, soil compaction, and soil moisture availability maps. Finally, soil cores can be collected and sent to the laboratory to validate the SIS measurements and perform further analyses when required. This system has been used in vineyards located in different terroir regions of California, France and Spain. Results demonstrated a more precise delineation of soil map units than traditional survey methods using pits and augers. This approach allowed a more precise mapping of soil depth to the underlying rock layers. It also provided the information necessary to design an irrigation system in a newly planted vineyard. In summary, SIS provides a rapid and effective approach to precision mapping of terroir components and will have broad applications for precision viticulture.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jean-Jacques LAMBERT (1), Mark STELFORD (2), John SAMUELSON (3) and James O’BRIEN (3)

(1) Department of Viticulture and Enology, University of California, Davis, CA, USA
(2) John Deere Agri Services, Hoffman Estates, IL, USA
(2) Soil and Topography Information (STI), Madison, WI, USA

Contact the author

Keywords

electrical conductivity, soil mapping, Digital Elevation Models (DEM), terroir, soil probe

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and
« The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP).

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.