Terroir 2006 banner
IVES 9 IVES Conference Series 9 Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Abstract

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements. Sensor readings are used to make precise estimations of soil texture, compaction, moisture and resistivity in the field. The probe reaches a depth of 1.2 to 1.5 meters. The data obtained are used to construct thematic maps, such as soil texture, soil compaction, and soil moisture availability maps. Finally, soil cores can be collected and sent to the laboratory to validate the SIS measurements and perform further analyses when required. This system has been used in vineyards located in different terroir regions of California, France and Spain. Results demonstrated a more precise delineation of soil map units than traditional survey methods using pits and augers. This approach allowed a more precise mapping of soil depth to the underlying rock layers. It also provided the information necessary to design an irrigation system in a newly planted vineyard. In summary, SIS provides a rapid and effective approach to precision mapping of terroir components and will have broad applications for precision viticulture.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jean-Jacques LAMBERT (1), Mark STELFORD (2), John SAMUELSON (3) and James O’BRIEN (3)

(1) Department of Viticulture and Enology, University of California, Davis, CA, USA
(2) John Deere Agri Services, Hoffman Estates, IL, USA
(2) Soil and Topography Information (STI), Madison, WI, USA

Contact the author

Keywords

electrical conductivity, soil mapping, Digital Elevation Models (DEM), terroir, soil probe

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Effect of vineyard management strategy on the nutritional status of irrigated « Tempranillo » vineyards grown in semi-arid areas

The combination of cover crops with regulated deficit irrigation has been lately shown to be a good method to improve harvest quality in irrigated vineyards of Southern Europe with semiarid climate, as an alternative to the conventional management, that consists on mechanical tillage and irrigation from fruitset to veraison and from then on reduced, or even ended.

Colour, phenolic, and sensory characteristics of commercial monovarietal white wines produced with maceration

White wines produced with skin and seed contact are of great interest in the wine sector. Maceration, whether performed prior to or concurrently with alcoholic fermentation, or even extended beyond its completion, significantly impacts the chromatic, mouthfeel, and aroma characteristics of these wines.

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.