Terroir 2006 banner
IVES 9 IVES Conference Series 9 Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Abstract

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements. Sensor readings are used to make precise estimations of soil texture, compaction, moisture and resistivity in the field. The probe reaches a depth of 1.2 to 1.5 meters. The data obtained are used to construct thematic maps, such as soil texture, soil compaction, and soil moisture availability maps. Finally, soil cores can be collected and sent to the laboratory to validate the SIS measurements and perform further analyses when required. This system has been used in vineyards located in different terroir regions of California, France and Spain. Results demonstrated a more precise delineation of soil map units than traditional survey methods using pits and augers. This approach allowed a more precise mapping of soil depth to the underlying rock layers. It also provided the information necessary to design an irrigation system in a newly planted vineyard. In summary, SIS provides a rapid and effective approach to precision mapping of terroir components and will have broad applications for precision viticulture.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jean-Jacques LAMBERT (1), Mark STELFORD (2), John SAMUELSON (3) and James O’BRIEN (3)

(1) Department of Viticulture and Enology, University of California, Davis, CA, USA
(2) John Deere Agri Services, Hoffman Estates, IL, USA
(2) Soil and Topography Information (STI), Madison, WI, USA

Contact the author

Keywords

electrical conductivity, soil mapping, Digital Elevation Models (DEM), terroir, soil probe

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

Impact des systèmes de conduite, de la gestion des sols et de la capacité de rétention d’eau des sols sur l’état hydrique de la vigne à Cognac

Dans le cadre de TerclimPro 2025, Sébastien Zito a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/9161

Exploring the contributions of terroir factors on berry quality of cvs. Cabernet-Sauvignon and Merlot (Vitis vinifera L.) at the Eastern Foothills of the Helan Mountains region of China

Terroir leaves its mark on the accumulation of flavours in grape berries, triggering biochemical re-actions and ultimately shaping wine styles.

Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

AIM Methyl salicylate (MeSA) has been reported as a potentially impactful compound in Verdicchio wines produced in central Italy. Lugana is another white wine produced in the north-east of Italy from a grape locally known as Trebbiano di Soave, sharing a very similar genetic background with Verdicchio. The aims of this study were evaluating MeSA occurrence in Lugana, assessing its aroma impact on white wines aroma and elucidating its biogenesis during vinification. METHODS Fifteen Lugana wines were analysed for methyl salycilate content in comparison with Verdicchio, Pinot grigio and Garganega wines. MeSA impact on white wine aroma was studied by means of triangular test, adding MeSA at different concentrations. Possible routes of MeSA formation by yeast were investigated by means of a high throughput assay in which S. cerevisiae cells were put in contact with precursor such as salicylic acid (esterification) or glycosidic extracts (glycosidase). Sub-fractions of Lugana glycosidic extracts were also obtained by HPLC fractionation, allowing further evaluation of precursors role.