Terroir 2006 banner
IVES 9 IVES Conference Series 9 Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Abstract

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements. Sensor readings are used to make precise estimations of soil texture, compaction, moisture and resistivity in the field. The probe reaches a depth of 1.2 to 1.5 meters. The data obtained are used to construct thematic maps, such as soil texture, soil compaction, and soil moisture availability maps. Finally, soil cores can be collected and sent to the laboratory to validate the SIS measurements and perform further analyses when required. This system has been used in vineyards located in different terroir regions of California, France and Spain. Results demonstrated a more precise delineation of soil map units than traditional survey methods using pits and augers. This approach allowed a more precise mapping of soil depth to the underlying rock layers. It also provided the information necessary to design an irrigation system in a newly planted vineyard. In summary, SIS provides a rapid and effective approach to precision mapping of terroir components and will have broad applications for precision viticulture.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jean-Jacques LAMBERT (1), Mark STELFORD (2), John SAMUELSON (3) and James O’BRIEN (3)

(1) Department of Viticulture and Enology, University of California, Davis, CA, USA
(2) John Deere Agri Services, Hoffman Estates, IL, USA
(2) Soil and Topography Information (STI), Madison, WI, USA

Contact the author

Keywords

electrical conductivity, soil mapping, Digital Elevation Models (DEM), terroir, soil probe

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

Closure permeability modulates the aroma expression of monovarietal white wines during bottle ageing

Bottle ageing is a critical period for wine quality, as it undergoes various chemical and sensory changes during storage. Ideally, a phase of qualitative ageing, during which wine sensory quality improves, is followed by a decline of quality. Understanding how different oenological variables influence these phases is a key challenge in modern winemaking. Recent studies highlighted the significant role of oxygen in modulating reactions involving volatile and non-volatile components, impacting aroma evolution during bottle aging. Oxygen exposure of wine during bottle ageing is mediated by closure.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.

A new AI-based system for early and accurate vineyard yield forecasting

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods