Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 “Terroir” studies in the Côtes du Rhône controlled appellation: from zoning to application

“Terroir” studies in the Côtes du Rhône controlled appellation: from zoning to application

Abstract

This work gives a summary of the most important programmes about viticultural « terroirs », developed on the « Côtes du Rhône » controlled appellation area for about twenty years.
The global plan is organized in 3 stages :
The first one regroups different characterisations of « terroirs » diversity ending at zoning : maps of topography, climatology, geology, soils and landscapes.
The second one includes some experimentations to evaluate the effect of terroirs on vine behaviour and on grape and wine composition. Different vine networks are controlled for several vintages to evaluate vine behaviour of the principal red cultivars of the region.
The third stage groups some actions for professional applications of « terroir » studies at different scales. At scale of cooperative winery, the knowledge of « terroirs » are principally used with the aim of improving the management of harvest selections. The practical actions at regional scale are leaded in order to protect the unique and irreplaceable « terroirs » and landscapes of « Côtes du Rhône ».

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Begoña RODRIGUEZ-LOVELLE (1) and Francis FABRE (2)

(1) Service technique, Institut Rhodanien, 2260 route du Grès, 84100 Orange, France
(2) Maison des vins, 6 rue des Trois Faucons, 84000 Avignon, France

Contact the author

Keywords

zoning, Côtes du Rhône, cooperative winery, practical application, harvest selection

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.