Terroir 2006 banner
IVES 9 IVES Conference Series 9 Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

Abstract

The honeydew moth Cryptoblabes gnidiella is the main problem for the wineries in the Northeast of the Brazil, because it attacks the bunch and reduces the quality of the grapes and the wines. In order to stretch out the bunch to facilitate the penetration of the insecticides, it was used gibberellic acid. Six treatments with different concentrations and different dates of application, and the control were compared. The bunches are compact, characteristic of the « Syrah » grapes in this region. The grape berries were analysed at harvest and wines were made by microvinifications. The grape berries showed different qualitative characteristics, as berry weight, number of berries, ºBrix, total acidity and heterogeneity of the maturation. The microvinifications were carried out with 50 kg of grapeberries into glass bottles of 20 L at 22ºC, for the alcoholic and malolactic fermentations, then stabilized and bottled. The wines were tasted by a panel of ten people and compared on smell and taste plans. The tasting results showed that the control treatment was the best graded wine. The application of gibberellic acid allowed to control the honeydew moth attack, but it caused a heterogeneity on grape maturation, with a lower quality of the grapes and wines compared to the control.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

André Luis CHAVES COSTA (1), José MONTEIRO SOARES (2), Giuliano ELIAS PEREIRA (3) and JOÃO SANTOS (4)

(1) Ing. Agronome, Boursier Facepe, Embrapa Semi-Árido, Petrolina-PE-Brasil
(2) Ing. Agronome, D.Sc., Chercheur Embrapa Semi-Árido, BR 428, km 152, Zona Rural, CP 23, 56302-970, Petrolina, PE, Brasil
(3) Ing. Agronome, Ph.D., Chercheur Embrapa Uva e Vinho / Semi-Árido, BR 428, km 152, Zona Rural, CP 23, 56302-970, Petrolina, PE – Brasil
(4) Ing. Agronome, ViniBrasil, Faz. Planaltino, 56.395-000, Lagoa Grande-PE-Brasil

Contact the author

Keywords

Vitis vinifera, Cryptoblabes gnidiella, wine tasting, wine quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Texas terroir: gis characterization of the texas high plains ava

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region.

1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

Tropical wines have been produced in the São Francisco river Valley thirty years ago, in the Northeast of Brazil. The main grape cultivar used for red tropical wines is ‘Syrah’, but wines have presented fast evolution, if they were made in the first or second semester, due to the high values of pH in grapes and wines and high climate temperatures.

Apports des mesures de résistivité électrique du sol dans les études sur le fonctionnement de la vigne et dans la spatialisation parcellaire

La mesure de la résistivité électrique des sols est une technique non destructive, spatialement intégrante, utilisée depuis peu en viticulture. L’utilisation d’appareils de mesures performant et de logiciels adaptés permet de traiter les données afin de pouvoir visualiser en deux ou trois dimensions les variations de textures ou d’humidité d’un sol.

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.