Terroir 2006 banner
IVES 9 IVES Conference Series 9 Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

Abstract

The honeydew moth Cryptoblabes gnidiella is the main problem for the wineries in the Northeast of the Brazil, because it attacks the bunch and reduces the quality of the grapes and the wines. In order to stretch out the bunch to facilitate the penetration of the insecticides, it was used gibberellic acid. Six treatments with different concentrations and different dates of application, and the control were compared. The bunches are compact, characteristic of the « Syrah » grapes in this region. The grape berries were analysed at harvest and wines were made by microvinifications. The grape berries showed different qualitative characteristics, as berry weight, number of berries, ºBrix, total acidity and heterogeneity of the maturation. The microvinifications were carried out with 50 kg of grapeberries into glass bottles of 20 L at 22ºC, for the alcoholic and malolactic fermentations, then stabilized and bottled. The wines were tasted by a panel of ten people and compared on smell and taste plans. The tasting results showed that the control treatment was the best graded wine. The application of gibberellic acid allowed to control the honeydew moth attack, but it caused a heterogeneity on grape maturation, with a lower quality of the grapes and wines compared to the control.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

André Luis CHAVES COSTA (1), José MONTEIRO SOARES (2), Giuliano ELIAS PEREIRA (3) and JOÃO SANTOS (4)

(1) Ing. Agronome, Boursier Facepe, Embrapa Semi-Árido, Petrolina-PE-Brasil
(2) Ing. Agronome, D.Sc., Chercheur Embrapa Semi-Árido, BR 428, km 152, Zona Rural, CP 23, 56302-970, Petrolina, PE, Brasil
(3) Ing. Agronome, Ph.D., Chercheur Embrapa Uva e Vinho / Semi-Árido, BR 428, km 152, Zona Rural, CP 23, 56302-970, Petrolina, PE – Brasil
(4) Ing. Agronome, ViniBrasil, Faz. Planaltino, 56.395-000, Lagoa Grande-PE-Brasil

Contact the author

Keywords

Vitis vinifera, Cryptoblabes gnidiella, wine tasting, wine quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).