Terroir 2006 banner
IVES 9 IVES Conference Series 9 Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

Abstract

The honeydew moth Cryptoblabes gnidiella is the main problem for the wineries in the Northeast of the Brazil, because it attacks the bunch and reduces the quality of the grapes and the wines. In order to stretch out the bunch to facilitate the penetration of the insecticides, it was used gibberellic acid. Six treatments with different concentrations and different dates of application, and the control were compared. The bunches are compact, characteristic of the « Syrah » grapes in this region. The grape berries were analysed at harvest and wines were made by microvinifications. The grape berries showed different qualitative characteristics, as berry weight, number of berries, ºBrix, total acidity and heterogeneity of the maturation. The microvinifications were carried out with 50 kg of grapeberries into glass bottles of 20 L at 22ºC, for the alcoholic and malolactic fermentations, then stabilized and bottled. The wines were tasted by a panel of ten people and compared on smell and taste plans. The tasting results showed that the control treatment was the best graded wine. The application of gibberellic acid allowed to control the honeydew moth attack, but it caused a heterogeneity on grape maturation, with a lower quality of the grapes and wines compared to the control.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

André Luis CHAVES COSTA (1), José MONTEIRO SOARES (2), Giuliano ELIAS PEREIRA (3) and JOÃO SANTOS (4)

(1) Ing. Agronome, Boursier Facepe, Embrapa Semi-Árido, Petrolina-PE-Brasil
(2) Ing. Agronome, D.Sc., Chercheur Embrapa Semi-Árido, BR 428, km 152, Zona Rural, CP 23, 56302-970, Petrolina, PE, Brasil
(3) Ing. Agronome, Ph.D., Chercheur Embrapa Uva e Vinho / Semi-Árido, BR 428, km 152, Zona Rural, CP 23, 56302-970, Petrolina, PE – Brasil
(4) Ing. Agronome, ViniBrasil, Faz. Planaltino, 56.395-000, Lagoa Grande-PE-Brasil

Contact the author

Keywords

Vitis vinifera, Cryptoblabes gnidiella, wine tasting, wine quality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim.

Efecto de la cota sobre el potencial enológico de tres varietales tintos en el sur de Tenerife

La zona sur de la Isla de Tenerife elabora principalmente vinos blancos. Desde hace unos años se intenta elaborar mayor cantidad de vinos tintos, siendo los resultados obtenidos variables en función

Wine industry, digital transformation, and sustainability: a systematic literature 

This paper aims to (i) identify the state of the art regarding digital transformation in the transition to sustainability in the wine industry, (ii) analyze the adoption of digital technologies at different stages of the winemaking process and their contribution to the triple bottom line of sustainability, and (iii) present a research agenda that facilitates the development of the field, providing contributions to both literature and managerial practice.

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential.

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.