Terroir 2006 banner
IVES 9 IVES Conference Series 9 Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

Abstract

This experiment tries to characterize the role of soil, climate and harvest date on the composition of grape-derivated thiols, 3-mercapto-hexanol (3MH) and 3-mercapto-hexile acetate (A3MH), in the white wines from Colombard varieties in Gascony (South-West of France). A network of 6 plots has been observed since 1999 on different pedologic units. The plots have common agronomical characteristics, plantation spacing (2,900 to 3,500 vines per ha), plantation aging (1985-1990), strength conferred by rootstock (SO4, RSB), soil management (grass covered 1 by 2) and training system (vertical shoot positionning pruned in single Guyot). Meteorological stations are located near the plots. Climatology is characterized by sums of temperatures and rainfalls during the vegetative growth. Vine water status is determined by stem water potential. The results show that it is possible to define 2 major kinds of soil, confirmed by measurement of primary shoot growth rate and his date of cessation growth. Grapes are harvested in 3 times between 40 and 55 days after veraison and vinified on a standart protocol. Grape-derivated thiol rate (3MH, A3MH) quantified in wines is dependant on the vintage conditions. Temperature variables seem to contribute to the presence of sulphur compounds in wines as well as the length of non-cutted primary shoot. An early harvest date does not benefit to increase grape-derivated thiols quantity in Colombard wines. Late harvest wines show better mouth balance and better aroma characteristic when tasted by expert group.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

T. DUFOURCQ (1), R. SCHNEIDER (2), R. RENARD (1) and E. SERRANO (1)

(1) ITV France, Midi-Pyrénées, V’INNOPOLE, 81310 Lisle/Tarn, France
(2) ITV France, INRA-UMR Sciences pour l’œnologie, 2 place Viala, 34060 Montpellier, France

Contact the author

Keywords

climate, soil, vine water status, Colombard, grape-derivated thiol

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Changes in grape-associated microbiome as a consequence of post-harvest withering

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1].

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Planting vineyards in cooler climates has been used over recent years as
a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays.