Terroir 2006 banner
IVES 9 IVES Conference Series 9 Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

Abstract

This experiment tries to characterize the role of soil, climate and harvest date on the composition of grape-derivated thiols, 3-mercapto-hexanol (3MH) and 3-mercapto-hexile acetate (A3MH), in the white wines from Colombard varieties in Gascony (South-West of France). A network of 6 plots has been observed since 1999 on different pedologic units. The plots have common agronomical characteristics, plantation spacing (2,900 to 3,500 vines per ha), plantation aging (1985-1990), strength conferred by rootstock (SO4, RSB), soil management (grass covered 1 by 2) and training system (vertical shoot positionning pruned in single Guyot). Meteorological stations are located near the plots. Climatology is characterized by sums of temperatures and rainfalls during the vegetative growth. Vine water status is determined by stem water potential. The results show that it is possible to define 2 major kinds of soil, confirmed by measurement of primary shoot growth rate and his date of cessation growth. Grapes are harvested in 3 times between 40 and 55 days after veraison and vinified on a standart protocol. Grape-derivated thiol rate (3MH, A3MH) quantified in wines is dependant on the vintage conditions. Temperature variables seem to contribute to the presence of sulphur compounds in wines as well as the length of non-cutted primary shoot. An early harvest date does not benefit to increase grape-derivated thiols quantity in Colombard wines. Late harvest wines show better mouth balance and better aroma characteristic when tasted by expert group.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

T. DUFOURCQ (1), R. SCHNEIDER (2), R. RENARD (1) and E. SERRANO (1)

(1) ITV France, Midi-Pyrénées, V’INNOPOLE, 81310 Lisle/Tarn, France
(2) ITV France, INRA-UMR Sciences pour l’œnologie, 2 place Viala, 34060 Montpellier, France

Contact the author

Keywords

climate, soil, vine water status, Colombard, grape-derivated thiol

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

Simulating single band multispectral imaging from hyperspectral imaging: A study into the application of single band visible to near-infrared multispectral imaging for determining table grape quality

To be accepted by the market and consumers table grapes need to meet certain requirements in terms of physical and chemical quality parameters.

Mannoproteins extraction from wine lees using natural deep eutectic solvents

Wine lees can be a good source of yeast mannoproteins for both food and wine applications [1,2]. However, mannoprotein extraction from wine lees has not yet been scaled up to an industrial scale, mainly because of the limited cost-effectiveness ratio of the methods employed at the laboratory scale [2].

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Le projet “Caractérisation des productions vitivinicoles du Barolo” est né par la volonté de la Région Piémont de créer une équipe multidisciplinaire de recherche pour l’individuation des différences

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.