The Bergerac guaranteed vintage area « terroirs »

Abstract

The vineyard of Bergerac, a guaranteed vintage, is situated in the mid-Lot valley, which has siliceous terraced rows on its hillsides, and on its bordering plateaux, composed of limestone and clay of the tertiary geological eras. In order to study and do a cartography of the « terroirs » in the 91 rural districts which include the area concerned (a project commissioned by the locals and european authorities), we defined a scale comprising twelve criterions for differentiating the « terroirs »; this enabled us to describe and do a cartography of them on a scale of 1/10 000. This study comes within the scope of a regional politic of cartography of the « terroirs », to give a toll of recomposition of the guaranteed vintage in the south-west of France.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Éric ROUVELLAC

Université de Limoges, Faculté des lettres et des sciences humaines, GEOLAB UMR – 6042 CNRS
39e, rue Camille Guérin, 87036 Limoges cedex, France

Contact the author

Keywords

terroirs, criterions for differentiating, cartography, guaranteed vintage, Bergerac

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Validation of a method for the determination of volatile compounds in in spirituous beverages using contained ethanol as a reference substance

The results of experimental studies of the method based on the usage of ethyl alcohol as an internal standard for the direct determination of volatile compounds in wines and others alcohol contained products are presented. The method was validated in terms of precision, accuracy, limits of detection and quantification (lod and loq), linearity, and robustness.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Inactivated yeasts: a case study for the future of precision enology

Yeasts serve as highly versatile tools in oenology. They do more than just perform alcoholic fermentation. Nowadays, yeasts from various species, naturally present in grapes, are selected for specific non-fermentative applications. For example, the use of selected non-saccharomyces at the early stage of winemaking has become a common practice to limit the growth of unwanted microorganisms. When inactivated, yeasts can be fractionated into soluble and insoluble fractions providing a wide range of benefits related to structural components or specific metabolites.

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon.