The Bergerac guaranteed vintage area « terroirs »

Abstract

The vineyard of Bergerac, a guaranteed vintage, is situated in the mid-Lot valley, which has siliceous terraced rows on its hillsides, and on its bordering plateaux, composed of limestone and clay of the tertiary geological eras. In order to study and do a cartography of the « terroirs » in the 91 rural districts which include the area concerned (a project commissioned by the locals and european authorities), we defined a scale comprising twelve criterions for differentiating the « terroirs »; this enabled us to describe and do a cartography of them on a scale of 1/10 000. This study comes within the scope of a regional politic of cartography of the « terroirs », to give a toll of recomposition of the guaranteed vintage in the south-west of France.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Éric ROUVELLAC

Université de Limoges, Faculté des lettres et des sciences humaines, GEOLAB UMR – 6042 CNRS
39e, rue Camille Guérin, 87036 Limoges cedex, France

Contact the author

Keywords

terroirs, criterions for differentiating, cartography, guaranteed vintage, Bergerac

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Development of a strategy for measuring fruity aroma potential in red wine

Levels of esters derived from substituted acids increase during the first years of aging and some of them are strongly involved in red wine fruity aromatic expression.

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Determination of Aroma Compounds in Grape Mash under Conditions of Tasting by On-line Near-Infrared Spectroscopy

The production of high-quality wines requires the use of high-quality grapes. Some compounds originating from grapes may negatively influence the odour and flavour of the resulting wine in their original form or as precursors for off-odours and –flavours. Therefore, a rapid evaluation of the grapes directly upon receival at the winery is advantageous. Up to now, grape aroma is mainly evaluated by tasting, however, this leads to subjective results. The use of near-infrared (NIR) spectroscopy allows a rapid, objective and destruction-free analysis without previous sample preparation. Moreover, the measurement can be integrated into an existing process without additional sampling.

First quantification of glut-3SH-SO3 and glut-3SH-al in juice and wine

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc.[1] In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough New Zealand, are strongly influenced by the concentrations of 3SH.[2,3