Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climatic zoning of the Ibero-American viticultural regions

Climatic zoning of the Ibero-American viticultural regions

Abstract

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”. An objective of the project is the climatic characterization of this large viticultural region with the participation of ten countries: Argentine, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal, and Uruguay. The first step in the research is based on Systematic Multi-criteria Climatic Classification (CCM) for Geo-viticultral regions. The project has assembled a climatic database that characterises the viticultural regions that includes variables relevant to viticulture: air temperature (average, maximum, and mininmum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. The application of the climatic indices IH, IF, and IS of the CCM System, highlights the variability of the thermal and hydrological components of the viticultural climate. The analysis of the climatic database, show the large climatic variability of the region. The initial results have identified seventeen viticultural climates in the twenty-six viticultural regions in the nine countries of the project. The identified viticultural climates represent forty-four percent of the climatic groups identified at the global level. This large regional climatic variability explains, to a large extent, the large diversity in the products of the Ibero-America region, including the organolepctic characteristics and the uniqueness of the vines produced. The research has also highlighted viticultural areas characterised by large inter-annual climatic variability. In such areas, the viticultural climatic classification changes as a function of the time of the year where grape-wine can be produced. The undergoing climate zoning is going to be used is a second phase of the project as a component of an integrated study that includes regional edaphic factors, and indicators of ecophysiological responses of the vineyards to natural factors.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Sotés (1) et J. Tonietto (2)

(1) universidad Politécnica De Madrid, Etsi Agrónomos – Ciudad Universitaria S/N – E28040 – Madrid, Spain
(2) embrapa – National Research Center For Viticulture And Wine – Cnpuv, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brazil

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

In order to assess climate change at regional scales suitable to viticulture, the outputs of ARPEGE_Climat global model (resolution 0.5°) were downscaled using the Regional Atmospheric