Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climatic zoning of the Ibero-American viticultural regions

Climatic zoning of the Ibero-American viticultural regions

Abstract

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”. An objective of the project is the climatic characterization of this large viticultural region with the participation of ten countries: Argentine, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal, and Uruguay. The first step in the research is based on Systematic Multi-criteria Climatic Classification (CCM) for Geo-viticultral regions. The project has assembled a climatic database that characterises the viticultural regions that includes variables relevant to viticulture: air temperature (average, maximum, and mininmum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. The application of the climatic indices IH, IF, and IS of the CCM System, highlights the variability of the thermal and hydrological components of the viticultural climate. The analysis of the climatic database, show the large climatic variability of the region. The initial results have identified seventeen viticultural climates in the twenty-six viticultural regions in the nine countries of the project. The identified viticultural climates represent forty-four percent of the climatic groups identified at the global level. This large regional climatic variability explains, to a large extent, the large diversity in the products of the Ibero-America region, including the organolepctic characteristics and the uniqueness of the vines produced. The research has also highlighted viticultural areas characterised by large inter-annual climatic variability. In such areas, the viticultural climatic classification changes as a function of the time of the year where grape-wine can be produced. The undergoing climate zoning is going to be used is a second phase of the project as a component of an integrated study that includes regional edaphic factors, and indicators of ecophysiological responses of the vineyards to natural factors.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Sotés (1) et J. Tonietto (2)

(1) universidad Politécnica De Madrid, Etsi Agrónomos – Ciudad Universitaria S/N – E28040 – Madrid, Spain
(2) embrapa – National Research Center For Viticulture And Wine – Cnpuv, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brazil

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

NMR approach for monitoring the photo-degradation of riboflavin and methionine

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile.

New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

Understanding the catabolism of thiol precursors is essential for understanding the revelation of varietal thiols in wine. For many years, knowledge of these precursors has been limited to the S-conjugates of glutathione, cysteine (Cys3SH) and the dipeptides g-GluCys and CysGly, without being able to explain the full origin of 3-sulfanylhexan-1-ol (3SH) in wines

Le zonage viticole en Italie. État actuel et perspectives futures

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing the scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.