Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climatic zoning of the Ibero-American viticultural regions

Climatic zoning of the Ibero-American viticultural regions

Abstract

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”. An objective of the project is the climatic characterization of this large viticultural region with the participation of ten countries: Argentine, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal, and Uruguay. The first step in the research is based on Systematic Multi-criteria Climatic Classification (CCM) for Geo-viticultral regions. The project has assembled a climatic database that characterises the viticultural regions that includes variables relevant to viticulture: air temperature (average, maximum, and mininmum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. The application of the climatic indices IH, IF, and IS of the CCM System, highlights the variability of the thermal and hydrological components of the viticultural climate. The analysis of the climatic database, show the large climatic variability of the region. The initial results have identified seventeen viticultural climates in the twenty-six viticultural regions in the nine countries of the project. The identified viticultural climates represent forty-four percent of the climatic groups identified at the global level. This large regional climatic variability explains, to a large extent, the large diversity in the products of the Ibero-America region, including the organolepctic characteristics and the uniqueness of the vines produced. The research has also highlighted viticultural areas characterised by large inter-annual climatic variability. In such areas, the viticultural climatic classification changes as a function of the time of the year where grape-wine can be produced. The undergoing climate zoning is going to be used is a second phase of the project as a component of an integrated study that includes regional edaphic factors, and indicators of ecophysiological responses of the vineyards to natural factors.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Sotés (1) et J. Tonietto (2)

(1) universidad Politécnica De Madrid, Etsi Agrónomos – Ciudad Universitaria S/N – E28040 – Madrid, Spain
(2) embrapa – National Research Center For Viticulture And Wine – Cnpuv, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brazil

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Vineyard mulching offer many benefits beyond winter protection

Grapevines are susceptible to freezing damage at temperatures below -5°F during the winter season. Preventing winter injury to grapevines is a major challenge in many grape-producing regions. Conventional methods such as hilling-up soil over graft unions have been developed as winter protection methods for preventing vine loss. However, these practices have drawbacks such as soil erosion, vine damage and crown gall development.

Tracing glycosidically-bound smoke taint markers from grape to wine

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.