Terroir 1996 banner
IVES 9 IVES Conference Series 9 A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

Abstract

La brise de mer et les facteurs climatiques qu’elle entraîne (accélération de la vitesse du vent au cours de l’après midi, augmentation de l’humidité et baisse de la temperature) sont d’un intérêt particulier pour la viticulture. La configuration climatique de la région, comprenant l’effect de la brise de mer, en parallèle avec des donnés pédologiques, viticoles et oenologiques sont étudiés afin de determiner les implications sur la croissance et le fonctionnement de la vigne et potentiellement sur la composition du raisin et le caractère du vin et de bien comprendre les interactions terroir/vigne/vin.
Le modèle atmosphérique RAMS (Regional Atmospheric Modelling System) a été utilisé afin d’étudier le degré de pénétration de la brise de mer et les caractéristiques climatiques (température, humidité relative et vent) qui en résultent, en parallèle avec des données en surface enregistrées par des stations agroclimatiques situées dans le vignoble. Des parcelles expérimentales de Sauvignon blanc situées dans les vignes commerciales sont associées à chaque station météorologique automatique. Les mesures viticoles et oenologiques de ces parcelles sont utilisées comme base pour étudier l’impact de la pénétration de la brise de mer et du topoclimat, en conjonction avec d’autres composantes du terroir, sur la viticulture de la région d’étude. Les résultats des analyses statistiques soulignent l’importance du climat, particulièrement les caractéristiques liées à la brise de mer.

The sea breeze and induced climatic patterns (increase in wind velocity in. the afternoon with a concomitant increase in relative humidity and reduction in temperature) are of particular interest for viticulture. The climatic patterns of the area, including the sea breeze effect, along with soil, viticultural and oenological data were studied in order determine the implications for vine growth and functioning, and, potentially, berry composition and wine character and to fully understand the terroir/vine/wine interactions.
The Regional Atmospheric Modelling System (RAMS) was used to study the degree of penetration by the sea breeze and the resulting climatic characteristics (temperature, relative humidity and wind) along with surface data recorded at agroclimatic stations situated in the vineyards. Associated with the automatic weather stations are experimental plots of Sauvignon blanc within commercial vineyards. The measured viticultural and oenological attributes of these plots were used as a basis to assess the impact of the sea breeze penetration and topoclimate, in conjunction with other terroir components, on viticulture in the study area. Results of statistical analyses emphasized the importance of the climate, especially sea breeze related characteristics.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

V.A. CAREY (1) and V.M.F. BONNARDOT (2)

(1) ARC Infruitec-Nietvoorbij, (Present address: Department of Viticulture and Oenology, Stellenbosch University, Private Bag Xl, 7602 Matieland, South Africa)
(2) ARC Institute for Soil, Climate and Water, Private Bag X5026, 7599 Stellenbosch, South Africa

Keywords

Modélisation Atmosphérique, brise de mer, humidité relative, température, Sauvignon blanc
Atmospheric Modelling, sea breeze, relative humidity, temperature, Sauvignon blanc

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,