Banner terroir 2002
IVES 9 IVES Conference Series 9 Campania region grapevine patrimony: a determination of the heat requirement of 19 nearly all-native ultivars. Nine years of observations.

Campania region grapevine patrimony: a determination of the heat requirement of 19 nearly all-native ultivars. Nine years of observations.

Abstract

[English version below]

Nous avons peu d’informations sur les cépages cultivés dans la région de la Campania (sud de l’ltalie). En particulier insuffisant sont les études sur les besoins thermiques de tels cépages. Les études sur les besoins thermiques des cépages peuvent contribuer au positionnement correct des cultivars dans les zones capables d’optimiser le rapport génotype-environnement des cépages du quel dépend, l’expression qualitative de la production. Pour les dites motivations nous avons effectué la présente étude, dans laquelle nous avons déterminé les conditions thermiques de 19 cépages presque tous indigènes de la Région, ayant comme référence le modèle proposé par AMERINE et WINKLER (1944). L’étude qui a déterminé une exigence de la chaleur des variétés étudies variables de 1625 degré-jours ( cv Fiano) a 2011 degré-jours (Bianca Zita), ajoute une autre étape à la connaissance du patrimoine viticole de la Campania.

 

There is little information on the grapevines cultivated in the Campania region (south of ltaly). In particular insufficient are the studies on the thermal requirements of such grapevines. Trials on the thermal needs of the grapevines may contribute to the correct positioning of the cultivars in areas able to optimise the environment genotype ratio of a cultivar on which, qualitative expression of the production depends. For said motivations it has been set up the present study, in which it was determined the thermal requirements of 19 cultivars nearly all native of the Region, having like reference the model proposed by AMERINE and WINKLER (1944). The study that evidenced an heat requirement of the studied cultivars variable from 1625 degree-days (cv Fiano) to 2011 degree-days (Bianca Zita), adds an other step to the acquaintance of the Campania grapevine patrimony.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

G. SCAGLIONE, C. PASQUARELLA

*Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli, “Federico II”. Via Alessandro Scarlatti, 110, 80129-Napoli

Contact the author

Keywords

Cépages, exigence de chaleur
Grapevines, thermal needs

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Protection of genetic diversity: maintenance and developements of a grapevine genebank in Hungary

Among the items preserved in gene banks, the old standard and autochthonous varieties represent an increasing value, since these varieties may have properties to make their cultivation more effective under changing climatic conditions. The increasingly extreme weather is a huge challenge for the viticulture. Collectional varieties can also play important role in protection against pests and pathogens. A genebank ensures not only the preservation of rare varieties, but also gives the opportunity for more knowledge and research of these varieties.

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].