Banner terroir 2002
IVES 9 IVES Conference Series 9 Campania region grapevine patrimony: a determination of the heat requirement of 19 nearly all-native ultivars. Nine years of observations.

Campania region grapevine patrimony: a determination of the heat requirement of 19 nearly all-native ultivars. Nine years of observations.

Abstract

[English version below]

Nous avons peu d’informations sur les cépages cultivés dans la région de la Campania (sud de l’ltalie). En particulier insuffisant sont les études sur les besoins thermiques de tels cépages. Les études sur les besoins thermiques des cépages peuvent contribuer au positionnement correct des cultivars dans les zones capables d’optimiser le rapport génotype-environnement des cépages du quel dépend, l’expression qualitative de la production. Pour les dites motivations nous avons effectué la présente étude, dans laquelle nous avons déterminé les conditions thermiques de 19 cépages presque tous indigènes de la Région, ayant comme référence le modèle proposé par AMERINE et WINKLER (1944). L’étude qui a déterminé une exigence de la chaleur des variétés étudies variables de 1625 degré-jours ( cv Fiano) a 2011 degré-jours (Bianca Zita), ajoute une autre étape à la connaissance du patrimoine viticole de la Campania.

 

There is little information on the grapevines cultivated in the Campania region (south of ltaly). In particular insufficient are the studies on the thermal requirements of such grapevines. Trials on the thermal needs of the grapevines may contribute to the correct positioning of the cultivars in areas able to optimise the environment genotype ratio of a cultivar on which, qualitative expression of the production depends. For said motivations it has been set up the present study, in which it was determined the thermal requirements of 19 cultivars nearly all native of the Region, having like reference the model proposed by AMERINE and WINKLER (1944). The study that evidenced an heat requirement of the studied cultivars variable from 1625 degree-days (cv Fiano) to 2011 degree-days (Bianca Zita), adds an other step to the acquaintance of the Campania grapevine patrimony.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

G. SCAGLIONE, C. PASQUARELLA

*Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli, “Federico II”. Via Alessandro Scarlatti, 110, 80129-Napoli

Contact the author

Keywords

Cépages, exigence de chaleur
Grapevines, thermal needs

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2].

Wine lees: characterization and valorization by kombucha fermentation

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels.

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.