Terroir 1996 banner
IVES 9 IVES Conference Series 9 From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

Abstract

L’aire des A.O.C. Madiran et Pacherenc du Vic-Bilh est située sur le piémont nord-occidental des Pyrénées, au nord du cône de Ger. Sa délimitation parcellaire a été complétée par une étude géo-pédologique systématique. L’analyse du modelé des échines dissymétriques qui portent le vignoble montre que la nature et la distribution des formations superficielles sont contrôlées par les systèmes de pente et les roches mères. Une carte géomorphologique au 1/50000 a guidé l’implantation de 37 topolithoséquences analysées à l’aide de 227 profils ouverts. La synthèse des études de terrain et des analyses physico-chimiques (pH, texture, capacité d’échange, minéraux argileux … ) permet de définir 12 types de sols. Le regroupement de ces unités aboutit à deux cartes pédologiques d’échelles complémentaires au 1/25000 pour la zone test du bassin du Bergons et au 1/50000 pour l’aire des A.O.C. Le contexte géomorphologique, la nature des substrats et les propriétés physico-chimiques des sols définissent leurs potentialités agronomiques et une hiérarchisation en quatre classes d’aptitudes viticoles.

The A.O.C. Madiran and Pacherenc of Vic-Bilh area is located in the northwestern piedmont of the Pyrénées, in the north of the Ger cone. lts delimitation was complemented by a systematic geo-pedological study. The geomorphologic analysis of the vineyard dissymmetrical relieves shows that the type and the distribution of the surficial formations are controlled by the slope systems and the parent rocks. A physiographic map at 1/50000 scale guided to establish 37 topolithosequences studied with 227 soil profiles. The synthesis of the field works together with physico-chemical analysis (pH, texture, exchange capacity, clay minerais … ) permits to characterize 12 soils types. These units are consolidated in order to present two pedological maps at complementary scales: 1/25000 for the Bergons basin test zone and 1/50000 for the A.O.C. surface. The geomorphological context, the type of the substrates and the physico-chemical properties of these soils define their agronomic potentialities and a hierarchization in four wine-producing aptitude classes.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

D. CHAUVAUD

Université de Pau et des Pays de l’ Adour, Laboratoire de Géodynamique et Modélisation des Bassins Sédimentaires, CURS-IPRA – B.P. 1155 – 64013 Pau Cédex

Keywords

vignoble, analyse géomorphologique, carte géomorphologique, topolithoséquences, cartes pédologiques, aptitudes viticoles des sols
vineyard, geomorphological analysis, physiographic map, .topolithosequences, pedological maps, wine producing aptitudes of soils

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Il vino nobile di Montepulciano

C’è grande attenzione al rapporto tra zonazione e marketing. Mi sembra però che ci sia anco­ra oggi un salto fra le pratiche di analisi del terreno e di deterrninazione di quello che potremo definire “cru” e quello che può essere la sua utilizzazione rispetto ai consumatori finali.

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.

Fractal analysis as a tool for delimiting guarantee of quality areas

The pioneering work of Mandelbrot in the 70’s for building the fractal theory lead rapidly to many interesting applications in different fields such as earth sciences and economy.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product.