Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caractérisation des terroirs viticoles champenois

Caractérisation des terroirs viticoles champenois

Abstract

Le vignoble champenois s’étend sur 35 300 ha en Appellation d’Origine Contrôlée dont 30 000 sont en production. Il couvre principalement 3 départements: par ordre d’importance, la Marne (68 % de la superficie en appellation), l’Aube (22 %) et l’Aisne (10 %), et de manière plus anecdotique la Haute Marne et la Seine et Mame. C’est un vignoble jeune (pour plus de la moitié de la superficie, les viticulteurs n’ont l’expérience que d’une seule génération de vignes), et morcelé (plus de la moitié des exploitations s’étendent sur moins de 1 ha; la taille moyenne d’une parcelle cadastrale est de 12 ares). En 1990, le Comité Interprofessionnel du Vin de Champagne (CIVC) a lancé une opération de zonage du vignoble champenois à l’échelle de 1/25 000ème (MONCOMBLE et PANIGAI, 1990). Cet organisme, qui assure à la fois des missions de recherche et de développement en matière viticole en Champagne, s’est alors trouvé confronté à 2 types de problèmes concernant son réseau expérimental actuel:

– il est difficile d’extrapoler les données issues d’une parcelle expérimentale à une zone plus large pour établir des cartes thématiques sur l’ensemble du vignoble. Pour pouvoir extrapoler ces résultats ponctuels, il faudrait définir la parcelle expérimentale par des caractéristiques qu’il est possible de spatialiser, par exemple des unités de terroir.
– il est parfois difficile de répondre précisément par manque de référence à des problèmes que les viticulteurs soumettent au CIVC. Les réponses pourraient être affinées s’il était possible de rattacher avec un minimum de données facilement accessibles (sondages à la tarière, mesure de la pente et de l’orientation, etc.) la parcelle du viticulteur qui pose problème à un site expérimental où les informations sont plus exhaustives.

L’objectif est donc de :
– définir des unités de terroir homogène de manière objective et reproductible,
– choisir, au sein de ces unités, des sites représentatifs où il serait possible d’implanter des observatoires de la vigne. Ces observatoires permettront de décrire et de mieux comprendre le fonctionnement de la vigne, voire de caractériser le type de vin pour une année donnée, en relation avec le terroir.
La mise en place de ce réseau impliquera une reconfiguration du réseau expérimental actuel du CIVC. L’objectif n’est pas de multiplier les parcelles expérimentales, ce qui deviendrait ingérable, mais de concentrer sur une trentaine de sites dispersés dans tout le vignoble un maximum de mesures et d’analyses en fonction des conditions de milieu naturel bien définies. Cela n’empêchera pas de conserver quelques sites expérimentaux plus “légers”, pour mieux comprendre la répartition spatiale de certains phénomènes. L’objectif est d’aboutir à 3 niveaux d’analyse:
– les observatoires qui représenteront le niveau le plus fin, mais dont le nombre sera limité à une trentaine de sites. Ce réseau expérimental sera une plate-forme commune et normalisée d’expérimentation à long terme (10 à 15 ans) et deviendra un véritable outil d’aide à la gestion appliquée des vignes. On peut estimer qu’en une quinzaine d’années, le modèle entre la plante et son environnement, selon un type d’année climatique, sera suffisamment stable et robuste pour être utilisable et extrapolable.
– un réseau d’expérimentation “plus léger” concernant certaines thématiques. Comme précédemment, ce réseau sera normalisé. On cherche en effet à éviter les problèmes d’interprétation des résultats à cause de données manquantes.
– des enquêtes réalisées auprès des viticulteurs qui permettent d’avoir de manière rapide une information spatiale sur l’ensemble du vignoble mais dont l’exploitation est parfois difficile du fait d’un manque de référentiel commun.
Les étapes de notre travail (Doledec, 1995) ont été :
– définir l’objet d’étude, “le terroir”, et informatiser les données disponibles. Le terroir est défini comme un ensemble de facteurs du milieu naturel en interaction (sol, sous-sol, relief). Compte tenu de l’hétérogénéité des parcelles (la superficie moyenne d’une parcelle cadastrale est de 12 ares), il est impossible de prendre en compte l’impact de l’homme, notamment par ses techniques culturales pour l’ensemble du vignoble champenois.
– estimer la qualité du jeu de données. Les données issues de la carte des sols font plus spécialement l’objet d’une étude de la justesse des notations utilisées par les techniciens. La comparaison entre la typologie de solums effectuées par le pédologue et celle issue d’une classification statistique permet d’affiner la carte des sols.
– déterminer les composantes principales des terroirs. Le choix de ces composantes repose sur la disponibilité de données informatisables et sur la connaissance d’avis d’experts mettant en évidence la relation entre des paramètres du milieu naturel et le comportement de la vigne.
– croiser les modalités des composantes principales des terroirs, pour aboutir à une carte des terroirs à 1/25000ème. Cette carte a été comparée à un zonage de la précocité de la vigne réalisé par des viticulteurs sur une commune.
– choisir, d’après la carte des terroirs obtenue, des sites potentiels pour l’implantation d’observatoires de la vigne.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

ANNE FRANCE DOLEDEC (1), M.C. GIRARD (2), D. MONCOMBLE (1), L. PANIGAI (1), M.C. VIRION (1)

(1) Comité Interprofessionnel du Vin de Champagne, 5, rue Henri Martin, 51204 Epemay
(2) Institut National Agronomique, 78850 Thivervai Grignon

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Nutrient absorption in vines (Vitis vinifera L., cv. Tempranillo blanco) under two water management approaches in a semiarid region of the north of Spain

Two treatments were studied in vines of cv. Tempranillo blanco (Vitis vinifera L.) during the 2012-2018 period in an experimental plot located in Rincón de Soto (La Rioja, Spain). Rainfed treatment (R0) was compared with respect to an irrigation treatment (R2) equivalent to 30% of the crop evapotranspiration (ET0) from fruitset to harvest phenological stages. Pre-veraison irrigation ranged from 43 (2014) to 66 mm/m2 (2018) while post-veraison irrigation ranged from 37 (2017) to 115 mm/m2 (2012).The normalized difference vegetation index (NDVI) was assessed by measures of reflectance, nutrients were determined by analysis of petioles sampled at veraison, grape production was determined at harvest as well as renewable wood weight was assessed at pruning time.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: agronomic performance and water relations

We report the effects of different drip irrigation treatments on the agronomic performance and water relations of Tempranillo grapevines, pruned to a bilateral cordon

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5)

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection