terclim by ICS banner
IVES 9 IVES Conference Series 9 Deconstructing the soil component of terroir: from controversy to consensus

Deconstructing the soil component of terroir: from controversy to consensus

Abstract

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors. 
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect. 
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses. 
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Stefanos Koundouras

Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece

Contact the author

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality

Oxygen consumption and changes in chemical composition of young wines

The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Understanding the genetic determinism of phenological and quality traits in ‘Corvina’ grape variety for selection of improved genotypes

Downy and powdery mildew are major issues in grapevine cultivation, requiring many phytosanitary treatments to ensure yield and quality. Climatic changes are also challenging grape cultivation

Assessing the benefits of irrigation access: the case of Southern France vineyards

Agriculture worldwide is threatened by climate change. In particular, declining water resource availability combined with increasing water demand is a key challenge in many rainfed areas, where irrigation appears to be a straightforward adaptation option. In this context, assessing the impacts of irrigation adoption on farm yields and incomes is a necessary step to reflect on the impact of both ex-post and ex-ante policies.