terclim by ICS banner
IVES 9 IVES Conference Series 9 VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Abstract

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Cécile Kahn1,2, Susanne Tittmann2, Ghislaine Hilbert1, Christel Renaud1, Eric Gomès1 and Manfred Stoll2

1EGFV, Univ. Bordeaux, Bordeaux Science Agro, INRAE, ISVV, Villenave d’Ornon, France 
2Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author

Keywords

Free Air CO2 Enrichment, carbon dioxide, berry ripening, berry composition

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

White grape juice consumption reduce muscle damage parameters in combat athletes

Introduction and objective: the practice of physical exercises in an exhaustive way is related to damage. Muay thai (mt) is a high-intensity sport that demands agility, strength and power, which can lead to fatigue and muscle damage. Grape juice is rich in carbohydrates and antioxidants, which can delay the onset of fatigue and muscle damage. The objective of the study was to evaluate the impact of white grape juice consumption, during 14 days, on muscle damage parameters in tm athletes.

Heatwaves and grapevine yield in the Douro region, crop model simulations

Heatwaves or extreme heat events can be particularly harmful to agriculture. Grapevines grown in the Douro winemaking region are particularly exposed to this threat, due to the specificities of the already warm and dry climatic conditions. Furthermore, climate change simulations point to an increase in the frequency of occurrence of these extreme heat events, therefore posing a major challenge to winegrowers in the Mediterranean type climates. The current study focuses on the application of the STICS crop model to assess the potential impacts of heatwaves in grapevine yields over the Douro valley winemaking region. For this purpose, STICS was applied to grapevines using high-resolution weather, soil and terrain datasets over the Douro. To assess the impact of heatwaves, the weather dataset (1989-2005) was artificially modified, generating periods with anomalously high temperatures (+5 ºC), at certain onset dates and with specific durations (from 5 to 9 days). The model was run with this modified weather dataset and results were compared to the original unmodified runs. The results show that heatwaves can have a very strong impact on grapevine yields, strongly depending on the onset dates and duration of the heatwaves. The highest negative impacts may result in a decrease in the yield by up to -35% in some regions. Despite some uncertainties inherent to the current modelling assessment, the present study highlights the negative impacts of heatwaves on viticultural yields in the Douro region, which is critical information for stakeholders within the winemaking sector for planning suitable adaptation measures.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

How to improve the success of dead vine replacement: insights into the impacts of young plant‘s environment 

Grapevine faces multiple biotic and/or abiotic stresses, which are interrelated. Depending on their incidence, they can have a negative impact on the development and production of the plant, but also on its longevity, leading to vine dieback. One of the consequences of vine dieback on production is the increased replacement rate of dead or missing vines within a parcel.