terclim by ICS banner
IVES 9 IVES Conference Series 9 Climate and the evolving mix of grape varieties in Australia’s wine regions

Climate and the evolving mix of grape varieties in Australia’s wine regions

Abstract

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Kym Anderson1, Gregory Jones2, German Puga3 and Richard Smart4

1,3Wine Economics Research Centre, University of Adelaide, Adelaide SA, Australia
2Abacela Vineyards and Winery, Roseburg OR, United States
3Centre for Global Food and Resources, University of Adelaide, Adelaide SA, Australia
4Smart Viticulture, Greenvale Vic, Australia

Contact the author

Keywords

adaptation to climate change, Australia’s viticulture, climatic classifications, winegrape varieties

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Pioneering dynamic AgriVoltaics in viticulture: enhancing grapevine productivity, wine quality and climate protection through agronomical steering in a large-scale field study

Context and purpose of the study. Climate change threatens traditional winegrowing regions, with about 90% of areas like southern France at risk by the end of the century due to heatwaves and droughts.

Phenolic composition and physicochemical analysis of wines made with the syrah grape under double pruning in the Brazilian high-altitude cerrado

Wine growing has proven to be a development opportunity for agribusiness in several new regions of brazil, including the federal district. There are more than ten existing wineries, established in the last five years. Through the double pruning system, which consists of trimming the growing shoots in the summer and positioning the ripening of the fruits in a cooler period of the season, the grapes are sought to ripen more completely. The syrah variety has shown excellent adaptation to this cycle management model.

Redwine project: increasing microalgae biomass feedstock by valorising wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

Conversion to mechanical management in vineyards maintains fruit

Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.