WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Wine shaking during transportation: influence on the analytical and sensory parameters of wine

Wine shaking during transportation: influence on the analytical and sensory parameters of wine

Abstract

According to OIV reports, annual world wine consumption fluctuated around 240-245 mln hL over the past decade. The general market globalization has led to the situation when almost half of the consumed wine is exported to other countries. Of this volume, more than 60 mln hL are bottled still and sparkling wines.

Transportation of bottled wine involves temperature changes, shaking and vibrations. The impact of the two last factors on the wine quality is currently not well understood. Some experts consider wine to be a robust product that easily withstands such mechanical stress. Other wine professionals argue that transportation may affect the wine quality, especially of high price segment products. Moreover, there is a common belief that wine needs a few days of “rest” after transportation before its consumption.

In this study, we summarized the current knowledge about the impact of transportation on wine parameters. In addition, we conducted our experiment with rosé wines, which were subjected to transportation simulations. We used young and aged Pinot Noir wines to compare their sensitivity to mechanical stress. Wine bottles were placed horizontally in cartons and shaken periodically (2 hours per day) for 2 and 7 weeks. Then the wines were analyzed and compared to non-shaken control samples.

As a result of the experiment, differences were found in the following basic wine parameters between shaken and control samples: oxygen content in the bottle’s headspace; free SO2 level (after 2 weeks). The examination of wine aroma composition included the analysis of varietal (terpenes, C13-norisoprenoids) and fermentation aromas (esters, higher alcohols and acids), as well as low molecular weight sulfur compounds (H2S, MeSH, EtSH, etc). Only some of the studied compounds differed between the shaken and control wine samples. These variations did not considerably impact the overall perception of wine aromas. Thus, sensory analysis did not reveal significant differences between the shaken and control wines in triangle tests.

Another aspect of this work is related to the development of a physical model, which can evaluate the total energy transferred to a wine bottle during transportation. This concept can assist the wine industry as well as further research, as more studies are needed on the behavior of various wines during transportation. Thus, this model can be used to explain and compare the results of different experiments.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Andrii Tarasov, Elena Zanella, Christoph Schuessler, Doris Rauhut, Valeri Lozovski, Rainer Jung

Presenting author

Andrii Tarasov – Department of Enology, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany

Department of Enology, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany | Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany | Institute of High Technologies, T. Shevchenko National University of Kyiv, Kyiv, 02033, Ukraine

Contact the author

Keywords

Wine – transportation – shaking – sensory – physical model

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Reviewing the geometry of terraces in the Douro region towards sustainable viticulture

The Douro demarcated region constitutes just over 50% of the area of mountain vineyard in the world, i.e., vineyards with slope gradients of 30% or above. Among the different (terraced) vineyard layouts, the formerly preferred wider terraces supporting two rows of vines and the currently advocated narrower single vine row, dominate the vineyards’ planting layout. The slope of these terraces, in other words, the supporting earth ramp, is a key element in these vineyards’ construction.

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).

Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada

The use of cover crops in vineyards has been encouraged by positive effects on wine grape yield and sensory attributes, and improved soil function. This study examined the efficacy of three alleyway and three undervine cover crop treatments in an organic vineyard in the semiarid Okanagan Valley, Canada in 2021.

Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Over the last decades, climate change and rising temperatures have impacted the wine industry. Wines from warm regions tend to have a higher pH and lower total acidity.

Vine selection in France: An assessment after more than 60 years of work

It was at the end of the second world war that professor Branas laid the foundations of french vine selection. He was also behind the creation of domaine de vassal (1949) and antav (1962), which were to become the bridgeheads of the french strategy for the conservation, selection and multiplication of viticultural diversity. Initially based on visually virus-symptom-free massal selections, with the main aim of providing healthy, clearly-identified plant material, the process evolved as knowledge gained towards clonal selection.