WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Oak Tannin and Unoaked and Oaked Wine Extracts Influence Gene Expression in HepaRG Human Liver Cells

Oak Tannin and Unoaked and Oaked Wine Extracts Influence Gene Expression in HepaRG Human Liver Cells

Abstract

Previous work from our laboratory has shown that both a purified toasted oak powder and extracts made from unoaked and oaked red wines influenced physiological parameters, metabolism and hepatic gene expression in high-fat fed C57/BL6J male mice (Luo et al., 2020).  Impacted pathways included glucose metabolism, liver fat accumulation, markers of chronic inflammation, and expression of the Gsta1 mRNA.  

In the present study, we utilized a novel cell model in a cell culture system, the HepaRG cell line.  These cells more closely resemble isolated human hepatocytes, and in particular, express robust levels of nuclear hormone receptors which may be involved in the sensing of phytochemicals.  We directly exposed HepaRG cells to three mixtures, the toasted oak tannin powder (OT), and two de-alcoholized extracts made from identical red wines fermented and aged in either steel tanks or oak barrels (oaked and unoaked wine concentrates; OWC & UWC).  In addition, other groups of cells were exposed to purified, individual compounds that may either be present in oaked wines or biotransformed by enterocytes of the small intestine:  ellagic acid (EA) and urolithin B (UroB).  OT concentration was 10 mg/L and OWC and UWC was 0.2 mL/L.  EA concentration was 300ug/L and UroB was 200ug/L.  Cells were exposed for a period of 48 hours, after which total RNA was isolated and used to perform ClariomB microarray gene expression analysis.  Data from these analyses is shown as both lists of most up- and down-regulated genes vs. untreated controls; with Venn diagrams to show commonality between different treatments, and upset plot analyses.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Neil F. Shay, Tedd Goldfinger, Ting Luo, Mikayla Chen

Presenting author

Neil F. Shay – Oregon State University

 Desert Heart Foundation | Nanchang University | Oregon State University

Contact the author

Keywords

Nutrition, Gene Expression, Oak, Tannins, Ellagic Acid

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).

Assessment of the optimal number of observations in the study of vineyard soil (Rigosol)

A study of soil pH on the experimental field resulted in a high variability of pH on a very small scale. This kind of heterogenity in soil pH have effects on growth of two grapevine varieties on rootstock Kober 5BB

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

The Shield4Grape project to improve the sustainability of European viticulture

Grapevine (vitis spp.) Is one of the major and most economically important fruit crops worldwide. Unlike other cropping systems, viticulture has ancient historical connections with the development of human culture and with the socio-cultural background of grape-growing areas. The vitis genus is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.