IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 NADES extraction of anthocyanins derivatives from grape pomace

NADES extraction of anthocyanins derivatives from grape pomace

Abstract

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process. Anthocyanins are responsible for the color of grapes and wine, a characteristic that is defined by their chemical structure. The color stability in their native form is affected by factors such as pH, temperature, and their chemical structure, which could limit their use as a natural colorant in the food industry. However, there are anthocyanin-derived pigments found in wines. The main interest in these pigments is that they present greater color stability against pH changes and SO2 bleaching than native anthocyanin. Emerging methods such as ultrasound-assisted eutectic mixture extraction have a high potential due to the low toxicity, chemical inertness with water, easy preparation, and huge biodegradability. There are four types of eutectic solvents, however, the mixtures that are formed from salt and a natural component such as alcohols, sugars, and organic acids are the most used in the extraction processes of bioactive compounds. The compounds were mixed with a 1:1 molar ratio with choline chloride (ChCl) as hydrogen bond acceptor (HBA) and its corresponding hydrogen bond donor (HBD) (malic acid, citric acid, tartaric acid, glucose and glycerol: urea), heated at a constant temperature of 80 °C and stirring at 700 rpm until a transparent liquid was obtained. Then the volume of distilled water corresponding to each mixture (30 % v / v) was added. The extraction was carried out in an ultrasonic bath at room temperature for 45 min. A solid-liquid ratio of 1 g of pomace per 10 ml of solvent was used. Total anthocyanins were determined using the differential pH method measured by a spectrophotometer. The highest extraction using NADES corresponds to the mixtures composed of choline chloride: glucose and choline chloride: urea: glycerol reaching a value of 4.57 and 4.36 mg eq of malvidin-3-O-glucoside /g of grape pomace respectively. On the other hand, no significant differences were found for a value of p≤0.05 between the mixtures containing citric acid and tartaric acid, obtaining values of 0.81 and 0.69 mg eq of malvidin -3-O-glucoside /g grape pomace respectively. Although it is known that anthocyanins are more stable in acidic media, the extraction values obtained for mixtures with acids were lower than expected

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Salas Erika¹, Castellanos-Gallo Lilisbet¹, Ballinas-Casarrubias Lourdes1, Espinoza-Hicks José Carlos¹and Hernández-Ochoa León¹

¹Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua

Contact the author

Keywords

grape pomace, extraction, anthocyanins derivatives, natural deep eutectic solvent (NADES)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

The evolution of italian vine nursery production over the past 30 years

Italy has a long history of viticulture and has become one of the world’s leading producers of vine propagation material. The Italian vine nursery industry is today highly qualified and has become highly competitive on a global scale. The quality of the material is guaranteed by compliance with European Union regulations, which have been in force since the second half of the 20th century and have subsequently been supplemented and updated.

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Evaluation of Acıkara (Vitis vinifera L.) native grape variety of anatolia for red wine production potential

The acıkara grape variety, a nearly forgotten native black variety in Anatolia/Turkey, has recently gained interest in its potential for producing high-quality wine from producers and consumers. The potential of producing high-quality red wine from the Acıkara grape variety (vitis vinifera), which is cultivated on the elmalı/antalya in the highland (1100 m altitude) of western mediterranean region, was investigated, and the suitability of the wine’s characteristics associated with high-quality red wine was determined.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.