IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Red wine astringency and the influence of wine–saliva aggregates on oral lubrication

Red wine astringency and the influence of wine–saliva aggregates on oral lubrication

Abstract

Oral tribology receives growing attention in the field of food sciences as it offers great opportunities to establish correlations between physical parameters, such as the coefficient of friction, and sensory perceptions in the human mouth. One important aspect is astringency produced by wine, which can be described as the sensation of dryness and puckering in the mouth, specifically occurring between the tongue and the palate after swallowing. Results obtained have contributed to important advances in trying to mimic oral conditions and astringency determination by lubrication tests (Brossard et al., 2021; Brossard et al., 2016). However, these results revealed complex and specific interactions between tannins and saliva proteins with or without the precipitation of the complex (Brossard et al., 2021; Rossetti et al., 2009; Cala et al., 2012; Brossard et al., 2016). In addition, astringency sub-qualities are affected not only the presence of particles, but also by their shape, size and texture (Brossard et al., 2021).
The latter presents a significant challenge in predicting astringency and mimicking oral conditions when tasting. Likewise, variations in the tribometers used and working conditions like tribopairs, contact load and sliding speed, make the comparison of different studies more difficult. This work aims at shedding some light on recent advances trying to correlate physical measures, such as the friction coefficient of oral tribology, with prevailing theories on underlying physiological causes for sensory perception of wines. Friction coefficient was evaluated using different experimental conditions including contact load, and sliding speed, using model wines and wines with different sensory astringency. Results of this work on the friction coefficient suggest that both soluble and insoluble aggregates could be responsible for oral lubrication modulation. A mechanism for astringency intensity and its sub-qualities that illustrates the role of the aggregates is proposed. The model for astringency takes into consideration not only the presence of the particles (shape, size and texture) but also its movement within the oral cavity. These aggregates could be sensed and modulate the friction coefficient, increasing or decreasing oral lubrication. Findings of this work propose an effect of aggregates on sensory perception and opens the possibility to explore their effect on oral lubrication.

References

 

Brossard, N., Cai, H., Osorio, F., Bordeu, E. & Chen, J. (2016). Oral tribology study of astringency sensation of red wines. Journal of Texture Studies, 47, 392–402.
Brossard, N., Gonzalez‐Muñoz, B., Pavez, C., Ricci, A., Wang, X., Osorio, F., Bordeu, E., Paola Parpinello, G. and Chen, J., 2021. Astringency sub‐qualities of red wines and the influence of wine–saliva aggregates. International Journal of Food Science & Technology, 56(10), pp.5382-5394.
Cala, O., Dufourc, E.J., Fouquet, E., Manigand, C., Laguerre, M. & Pianet, I. (2012). The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding. Langmuir, 28, 17410–17418.
Rossetti, D., Bongaerts, J.H.H., Wantling, E., Stokes, J.R. & Wil- liamson, A.-M. (2009). Astringency of tea catechin: More than an oral lubrication tactile percept. Food Hydrocolloids, 23, 1984–1992

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Brossard Natalia¹, Madrid Romina¹, Alfaro Gabriel¹, Rosenkranz Andreas¹and Bordeu Edumundo¹

¹Department of Fruit Trees and Enology, Pontifical Catholic University of Chile

Contact the author

Keywords

Wine astringency, tannin–protein aggregates, red wine, oral lubrication

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage.

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.