IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

Abstract

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors. The exact route of g-nonalactone biosynthesis in wine has not been fully elucidated; however, precursors including 4-oxononanoic acid, linoleic acid, 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE) and 9-hydroxyoctadeca-10,12-dienoic acid (9-HODE) have been identified in incubation experiments. Wines produced from grapes infected with “noble rot” caused by Botrytis cinerea fungus generally show higher concentrations of g-nonalactone compared to non-botrytised white wines, but the relative contribution of potential formation pathways has not been elucidated. To assess the effect of linoleic acid on the production of g-nonalactone in wine, fermentations with and without added linoleic acid were carried out in synthetic grape must (SGM) at 28 °C using commercial Saccharomyces cerevisiae EC1118. Prior to g-nonalactone quantitation in the finished wines and in a subset of six Australian and New Zealand commercial wines, several routes for the synthesis of a deuterated analogue of g-nonalactone were attempted, before the deuterated d6-analogue of g-nonalactone from its non-deuterated analogue was produced successfully. Subsequently, attempts were made to utilise the d6-analogue as an internal standard for the measurement of g-nonalactone using gas chromatography-mass spectrometry. However, the synthetic deuterated g-nonalactone analogue proved to be an inappropriate internal standard for this purpose, due to incomplete incorporation of deuterium atoms. 2-Octanol was instead used as a surrogate internal standard. g-Nonalactone was successfully identified (above the limit of detection, 4.12g/L) in two commercial New Zealand botrytised wine samples, and one fermentation sample to which linoleic acid (132 mg/L) had been added. This suggests a possible link between the effect of Botrytis cinerea and/or linoleic acid, and increased levels of g-nonalactone in wine. The promising results in these preliminary experiments have led to an improved internal standard being sought out for the quantification of g-nonalactone in wine, and further investigation of its biosynthesis. A 13C4-labelled g-nonalactone analogue was successfully synthesized based on a previous method, with four 13C atoms being introduced into the molecule via two Wittig olefination steps. This standard will be used for a much larger survey of approximately 40 botrytised and non-botrytised New Zealand wines, in addition to further fermentation experiments assessing the effects of the addition of a wider range of putative precursors.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Miller Gillean1, Fedrizzi Bruno1, Barker David1, Pilkington Lisa1 and Deed Rebecca1

1The University of Auckland, School of Chemical Sciences

Contact the author

Keywords

Lactones, Botrytis, White wine, New Zealand, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of different winemaking techniques and grape variety on chemo-sensory parameters of white wines

AIM: Study the chemical and sensory parameters of fifty commercial white wines elaborated with different techniques (fermented in oak barrel and aged on lees (FB+AL); aged on lees (AL); and without aging (WA)) and different grape varieties (Verdejo, Sauvignon blanc and Godello).

The aroma diversity of italian white wines

AIM: Aroma is a key contributor to white wines sensory typicality, perceived diversity and overall preference.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients