WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Abstract

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Viniculture is a huge socio-economic activity throughout the world, 57% of worldwide grape production is for wine-making industry. Wine-making generates huge amounts of by-products (grape pomace (skins, pulp, seeds and stalks), which is around 20 % of total wine production [1]. Wine by-products shown to have a big potential to be used for the extraction of valuable high-added components, however they are sent directly to distilleries for alcohol, spirits and piquette production. The treatment of biomass is often challenging due to its complex matrix

and composition. Heavy industrialization and associated huge environmental impact make reconsidering traditional chemistry methods.

The aim of our work is to valorise valuable components (pectins, fatty acids, polyphenols) from grape by-products by implementing green chemistry methods such as microwave-assisted extraction (MAE), and supercritical CO2 extraction (SFE). In this work, grape pomace from white grapes was considered for the extractions. By using MAE, we were able to extract pectin with a yield up to 8% from grape pomace. Fatty acids were successfully extracted by SFE from grape pomace with CO2 under 40° C, 400 bar and by using ethanol 5% as co-solvent. Water as co-solvent 10 % in supercritical CO2 extraction lead to burgundy coloured liquid, which contained wine related phenolic compounds detected by U-HPLC (gallic and caftaric acids, hydroxytyrosol, catechin). In addition, the coloured extracts undergo pectin isolation procedure and freeze-dried. Initial observation of the extract by FTIR show similar signature to industrial pectin. The findings show possible valorisation of pectin, grape seed oil and phenolic compounds from wine pomace.

[1]        Arvanitoyannis I. S., Ladas D., Mavromatis A., « Wine waste treatment methodology », Int J Food Sci Tech, vol. 41, no 10, p. 1117‑1151, 2006

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Gayane Hayrapetyan, Karen Trchounian, Maria Nikolantonaki , Régis Gougeon, Elias Bou-Maroun, Dijon, Ali Assifaoui

Presenting author

Gayane Hayrapetyan – UMR PAM, Equipe PCAV, Université de Bourgogne/Institut Agro, Dijon

Yerevan State University, Biochemistry, Microbiology, Biophysics, Biotechnologyi | UMR PAM, Equipe PCAV, Université de Bourgogne/Institut Agro, Dijon

Contact the author

Keywords

Winery waste, green chemistry, extraction, SFE CO2, oil, pectin

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Correction de la teneur en alcool des vins par évaporation partielle sous vide en cours de fermentation alcoolique

Climate change has become a reality that is becoming more and more apparent every day, with changes in the physico-chemical composition of grapes and an increase in the alcohol content of finished wines. These higher alcoholic degrees are not without consequences for the success of alcoholic and malolactic fermentation. Correcting the alcohol content (-20% of the initial alcoholic strength) is also part of an approach designed to meet consumer expectations for healthier, lighter or lower-alcohol wines (9 to 13% vol.). Correcting the alcohol content of wines also rebalances the mouthfeel by reducing the alcohol’s burn.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes).

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.