WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Which heat test can realistically estimate white wine haze risk?

Which heat test can realistically estimate white wine haze risk?

Abstract

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

In this study, 6 heat tests were applied on 14 Sauvignon wines (France) : 5-30-60 min. at 80°C and  30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under real Summer conditions, i.e temperatures corresponding to heat waves (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The 66 Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

The turbidities of the wines subjected to Summer temperature conditions (1 day at 35°C, 4 days at 35°C, 4 days at 35°C + 1 day at 43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min.  at 50°C. The PCC were between 0.980 and 0.989. The higher PCC were observed between Summer realistic conditions and a heat test during 120 min. at 50°C with PCC values between 0.993 and 0.997. The PCC between Summer heatings and a heat test during 60 min. at 80°C were interesting (0.911-0.924) but not so high.

Beyond these relationships, it is essential for a winemaker to consider the turbidity reached by the wine after a heat test. The problem is that turbidities observed for a wine after different heat tests can reach 2, 8 and 34 NTU when the wine was heated a 4 days at 35°C+ 1 day at 43°C, 2hrs at 50°C and 1hr at 80°C respectively. In these conditions, it is very problematic to decide what is the correct dose of bentonite to ensure a complete colloidal stability with time of the wine.

Proteins implicated in the white wine haze are essentially thaumatin-like proteins (TLPs) and chitinases whose temperatures of denaturation are around 55°C and 62°C respectively. It explains why the heat tests at 80°C, even if correlated with realistic tests give excessively high values when compared with what can happen to a wine during a hot Summer. This leads the winemaker to use excessive bentonite doses given stripped wines whilst lower doses could be sufficient to ensure the absence of haze in the bottle.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

RICHARD MARCHAL, Thomas Salmon, Marine Lecomte, Bertrand Robillard

Presenting author

RICHARD MARCHAL – University of Reims Champagne-Ardenne – University of Haute-Alsace

University of Reims Champagne-Ardenne – University of Haute-Alsace | University of Reims Champagne-Ardenne – University of Haute-Alsace | Institut Oenologique de Champagne

Contact the author

Keywords

Haze risk, protein, white wine, Sauvignon, Gewurztraminer

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Influence of edapho-climatic factors on grape quality in Conca de Barberà vineyards (Catalonia, Spain)

Soil and climate of 3 vineyards have been characterised in order to determine their influence on grape quality. These vineyards are located in Conca de Barberà (Catalonia, NE Spain) and belong to Cabernet sauvignon and Grenache noir cultivars. All 3 plots are very close, so only interannual climatic data of the nearest meteorological station have been considered.

Early ripening in cool climate viticulture varieties is mainly based on a mutation in ‘Pinot precocé noir’

For a long time, cool climate grapevine breeding has striven for early ripening cultivars to adapt to the former climate conditions.

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.

Effect of vineyard management strategy on the nutritional status of irrigated « Tempranillo » vineyards grown in semi-arid areas

The combination of cover crops with regulated deficit irrigation has been lately shown to be a good method to improve harvest quality in irrigated vineyards of Southern Europe with semiarid climate, as an alternative to the conventional management, that consists on mechanical tillage and irrigation from fruitset to veraison and from then on reduced, or even ended.

Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

In some white wines, malolactic fermentation (MLF) is very interesting, and for low pH wines this process is particularly difficult. Although MLF is generally not recommended for sparkling white wine, some winemakers prefer to promote MLF to contribute to organoleptic complexity. Oenococcus oeni is generally the bacterium of choice for MLF.