WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

Abstract

The increasing interest in enhancing groundbreaking sensory profile of wines determined the need to select novel strains of lactic acid bacteria (LAB). Metabolic processes characterizing malolactic fermentation (MLF) lead to the production of several organic compounds that significantly impact the oenological and sensory characteristics of wines. Traditional malolactic fermentation relies on the inoculum of LAB at the end of the alcoholic fermentation performed by yeasts. The present research aimed to evaluate the effect of five LAB (Lactiplantibacillus plantarum MLP K45H, Oenococcus oeni BETA, O. oeni F2016, O. oeni PN4®, O.oeni VP41® purchased from LallemandOenology) and two Saccharomyces cerevisiae strains (QA23 from Lallemand and NF213 belonging to culture collection of University of Palermo) co-inoculated or added sequentially after alcoholic fermentation. All experimentations were performed with Catarratto and Riesling white grapes.

Even though the results varied with LAB strain and inoculation strategy adopted, the best performances were registered for L. plantarum MLP K45H that

concluded MLF within three and eight days during co- and sequential inoculation in Catarratto wine, respectively. Thus, it can be assumed that O. oeni strains were more susceptible to competition with S. cerevisiae in comparison to L. plantarum. With regards to Riesling wine production, the best results were shown by strain F2016 during co-inoculation since the MLF was ended within 5 days, maintain the

best fermentative rate also in sequential inoculum.

In conclusion, the use of L. plantarum MLP K45H allowed to overcome the competition of other malolactic microorganisms with yeasts and represents an alternative to the use of O.oeni but the inoculum strategy, and the choice of the strain of bacteria must carefully studied considering the wine complexity.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Vincenzo Naselli, Nicola Francesca, Antonio Alfonzo, Paola Vagnoli, Sibylle Krieger, Tomas Roman, Giancarlo Moschetti

Presenting author

Raffaele Guzzon – Fondazione Edmund Mach, Technology Transfer Center

Department of Agricultural, Food and Forest Science, University of Palermo, Food and Forest Science, Lallemand Oenology, Fondazione Edmund Mach, Technology Transfer Center.

Contact the author

Keywords

Malolactic fermentation, simultaneous fermentation, L. plantarum, Catarratto, Riesling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

L’Appellation d’Origine Contrôlée « Huile Essentielle de Lavande de Haute Provence »

Depuis des siècles, la lavande est utilisée pour son parfum et pour ses vertus thérapeutiques naturelles.

Distribution and associated symptoms of grapevine trunk pathogens in South Africa

In recent studies, several grapevine trunk pathogen complexes have been identified from grapevines in South Africa. These pathogens include Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium sp., Botryosphaeria sp. and Phomopsis sp. Trunk diseases lead to reduced yield, and grape quality as well as a decline

Influence of the unité de terroir base on the typicity of winesin the AOC Priorat in Tarragona

L’AOC Priorat, située derrière les montagnes du pré littoral de Tarragone, se caractérise par un climat méditerranéen avec une tendance à la continentalité et très peu de précipitation pendant le cycle végétatif. Les sols sont secs, pauvres et caillouteux, formés par des schistes. Au cours des années 2000 et 2001, une étude de l’influence du terroir sur la typicité des vins du Priorat a été réalisée en prenant comme référence trois cépages cultivés dans différentes parceIles pour mesurer l’effet du terroir et du mésoclimat sur la qualité des vins:

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.