GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Analysis of primary, secondary and tertiary aromas in Vitis vinifera L. Syrah wines with an extemporaneous production cycle in two regions of São Paulo – Brazil, using GC-MS

Analysis of primary, secondary and tertiary aromas in Vitis vinifera L. Syrah wines with an extemporaneous production cycle in two regions of São Paulo – Brazil, using GC-MS

Abstract

Context and purpose of the study – The aromatic perception is one of the main factors that influence the consumer when determining the wine’s quality and acceptance. Numerous factors (soil, climate, winemaking style, cultivar) can influence the volatile compounds. Some of these compounds are released directly from the grape berries while others are formed during the fermentation and aging processes. However, little is known about the quality and aromatic formation of Syrah variety in the winter cycle cultivated in São Paulo. This study aimed to characterize the primary (originated from the grape), secondary (fermentation) and tertiary aromas (evolution) of these wines, showing the wine potential from new producing regions in São Paulo state.

Material and methods – The microvinifications were made using the traditional method. The Syrah variety (clone 174 ENTAV – INRA ® on rootstock 1103P – clone 768 ENTAV – INRA ®) was conducted in double cordon VSP system, with winter harvest in Indaiatuba (low altitude and hot climate) and São Bento do Sapucaí (high altitude and cold) – Brazil. The analyses of volatile compounds were carried out in the main stages of the vinification process (must extraction, after alcoholic fermentation, after malolatic fermentation, before packaging and after 6 months in bottle). The samples were collected and frozen at -80 ° C until analysis. An Agilent 7890 GC system coupled to 5977 MS detector equipped with a Supelcowax column (30m x 0.25mm x 0.25μm film thickness) was used.

Results – Vines from the Indaiatuba region presented an average production of 7 bunches per plant. The bunches showed average weight of 76.5 g and size of 10.9 cm. Berries had 11 mm diameter and weighed 1.5 g. Must presented total soluble solids of 20ºBrix, total acidity of 105 meq.L-1, pH 3 and 1084 density. 24 primary aromas were found, such as lavender and apricot, 42 secondary aromas such as cooked apple and roses, and 17 tertiary aromas such as butter and honey. The vines of São Bento do Sapucaí presented an average of 9 bunches per plant. Bunches with an average weight of 101.8 g and length of 13 cm. Berries had a diameter of 12.5 mm and a weight of 1.5 g. Must presented total soluble solids of 21.5ºBrix, total acidity of 100 meq.L-1, pH 3 and 1090 density. The must had 29 primary aromas, such as mint and pear, 36 secondary aromas, such as honey and rose-orange, and 20 tertiary aromas such as wintergreen and mint.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Lucas AMARAL1,2*, Luísa TANNURE3, Marite DAL’OSTO3, Florença BORGES1,2 and Eduardo PURGATTO1,2

1 Dept. of Food Science and Exp. Nutrition, School of Pharmaceutical Sciences USP– 05508-000 São Paulo –Brazil
2 Food Research Center (FoRC), CEPID-FAPESP – USP– 05508-000 São Paulo – Brazil
3 Instituto Federal de São Paulo- IFSP – 18145-090, São Paulo – Brazil

Contact the author

Keywords

grapevine, Syrah, grapevine cycle modification, aroma, cromatography, Brazil

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Composition and molar mass distribution of different must and wine colloids

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors.

Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

In this study two different compost types and two application methods were studied over 5 years (2009-2013) on mature Cabernet Sauvignon vines grown in a commercial vineyard in the AOC Piave area, northeastern Italy.

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.