GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Abstract

Context and purpose of the study – Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.

Material and methods – Clusters of grapevines of Vitis vinifera L. cv. Tempranillo were collected in a commercial vineyard located in Tudelilla, La Rioja, Spain (Lat. 42°18′ 18.26″, Long. -2°7′ 14.15″, Alt. 515 m) on five different dates from veraison to harvest in 2016 season. Contactless (at 25 cm from berries) spectral measurements from intact grape berries were acquired using a NIR spectrometer working in the 1100 – 2100 nm spectral range under laboratory conditions.A total of 19 individual amino acids in 120 grape clusters were quantified by HPLC, which was used as the reference method for the validation of the spectral tool. Principal component analysis (PCA) and Modified partial least squares (MPLS) regressions were used to explore the data structure and for the prediction of the amino acids profile in grape berries, by building calibration and validation models.

Results – A wide variability of all studied parameters was found during the ripening process with amino acid content ranging from 0.07 mg N/l (Glycine) to 534 mg N/l (Arginine). On average, Arginine was the most abundant amino acid (46.64 %), followed by Glutamine (14.70 %) and Proline (6.76 %). The best calibration and cross-validation models were built for Arginine, Cysteine and Proline with correlation coefficients values of 0.80, 0.77 and 0.75, while the standard errors of cross validation (SECV) were 43.04 mg N/l, 0.40 mg N/l and 5.87 mg N/l, respectively. In terms of the Free Amino Nitrogen content (FAN) the values of 0.71 and 104.85 mg N/l were gathered for the correlation coefficient of cross validation and SECV, respectively. The potential of NIR technology to fingerprinting the amino acid content in intact berries has been investigated. This technology could be used to select or classify grape berries during ripening in the vineyard, or at harvest time at the reception of the grapes in the production line (winery). This could be very useful to adapt the enological fate or grape berries to different wine qualities or styles, as well as to adopt different viticultural (thinning, selective harvesting) or enological decisions. Nevertheless, further examination of the influence of more varieties, seasons, and origins should be conducted with the aim of developing more robust, global, and predictive models.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Juan FERNÁNDEZ-NOVALES1, Teresa GARDE-CERDÁN1, Javier TARDÁGUILA1, Sandra MARÍN-SAN ROMÁN1, Eva P. PÉREZ-ÁLVAREZ1, Eugenio MOREDA1, Maria-Paz DIAGO1*

Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja) Finca La Grajera, Ctra. de Burgos Km 6. 26007 Logroño, La Rioja, Spain

Contact the author

Keywords

grape ripening, non-destructive evaluation of berries, nitrogen composition, spectral techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault. METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.