GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Abstract

Context and purpose of the study – The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine. The aim of this study was to evaluate the ability of δ13C to differentiate wine growing regions of Uruguay by the relationship between the isotope indicator and the main productive variables.

Material and methods – The study was conducted in 2018 in commercial vineyards of the Tannat variety grafted on to SO4 rootstock, trained in a trellis system. The vines were planted in a four different climate regions for Uruguay determined by Multicriterial Classification system (MCC): 1-IH5, IF2, IS1-Salto (North, corresponds to a warm climate, cool nights and moderate drought), 2- IH4, IF2, IS1-Durazno (Center, corresponds toa temperate-warm climate, nights and moderate drought), 3- IH4, IF1, IS1-Colonia (Northwest, corresponds to a temperate-warm climate, warm nights, moderate drought), and 4- IH3, IF2,IS1-Canelones (South corresponds to a temperate climate, cool nights and moderate drought). Climatic data were obtained from meteorological stations in each region according to World Meteorological Otganization (WMO standards). For each climatic region, the state hydric of the plant (ψb) was determined in four moments in the cycle; at harvest: berry weight, free amino nitrogen in must, δ13C in berries, pH, acidity, sugars and total and extractable anthocyanins it was determined.

Results – In the studied zones, under rainfed conditions, the values of δ13C were correlated to the water deficit. The δ13C was strongly correlated with the hydric state of the plant and allowed to differentiate the two most extreme climatic regions (1 and 4). The most negative δ13C values were obtained in climatic zone 1 (warm), explained by the rainfall accumulated during the maturation period. The δ13C showed significant correlations with the weight of the berry for each of the zones, free amino nitrogen in the berry, total and extractable anthocyanins, and the total acidity. These results indicate that δ13C, is an interesting indicator to evaluate the quality of the grape and confirm climatic regions.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Gustavo PEREYRA1*, Leandro ARRILLAGA1, Julia SALVARREY1, Veronica BERRIEL2, Milka FERRER1

1 Producción Vegetal-Viticultura, FAGRO-UdelaR, 780 Garzón,12900 Montevideo, Uruguay
2 Suelos y Aguas, FAGRO-UdelaR, 780 Garzón, 12900 Montevideo, Uruguay

Contact the author

Keywords

δ13C, Tannat, water status, climatic regions

Tags

Citation

Related articles…

Estudio de fertilidad en variedades blancas en Castilla-la Mancha

La adaptación de nuevas variedades a zonas de cultivo fuera de su área de origen presenta múltiples interrogantes. En Castilla-La Mancha se está produciendo en los últimos años una gran inquietud por la diversificación y la reconversión de variedades.

Critical investigation on additions to improve the sensory characteristics of dealcoholized wine

The demand for dealcoholized wine has been progressively increasing in recent years. Moreover, the attention for such products is probably increasing even more. Due to that increasing demand and market awareness the legal authorities are about changing rules for that products. Also, at OIV level, these products are being intensively discussed for certain time. The production of dealcoholized wine bases on wine as initial product. This wine is then reduced by physical methods to an alcohol content of less than 0.5% vol., or in other words, to less than 4g/l of alcohol. There are various technologies are possible for producing dealcoholized wine (Schmitt and Christmann 2019).

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

UV-Visible spectroscopy in conjunction with chemometrics, was successfully applied to objectively differentiate sparkling wine press juice fractions of Pinot noir. Two measurements methods were applied: reflectance using a fibre optic probe in-line and transmission using a benchtop spectrophotometer.

Sustainable strategies for the management and valorization of wine lees

Wine lees represent an abundant yet largely undervalorised by-product of the winemaking industry.