GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

Abstract

On the basis of a direct agreement between the GiESCO and the vine grower, the winemaker and the consumers (individual; company; public or private organizations), the communication on the content of the charter can be done as follows:

• Commitment to respect the basic rules of the GiESCO “BIO – MetaEthics” charter.

1/ Put Mankind in the depth of all concerns in a universal context: (grower, consumer, citizen, work valuing, education, security)

2/ Insure minimum impact on environment by optimizing cultivation technics: (maximum of natural biodegradable products, friendly practices, short channels, renewable energies, terroir sustainability)

3/ Warrant transparency and evaluation of all operations: (traceability of the production line, complete analyses of the products, use of secure scientific methods, wide communication)

• Specific choices made by the vine grower, the winemaker and the consumer (individual; company; public or private organizations) respecting the basic rules.

A precise example is taken in North – East of Italy where activities were conducted in a farm located both in the hillside in the well-known ‘terroir’ of Prosecco area, and in the flat area, and differently managed according to the location.

It has been verified with successful application, that this ” Charter of Direct Sustainability BIO – MetaEthics” can be used anywhere, in conventional or otherwise certified companies (for example: “Organic”, “VIVA”, …), in which the producers want to “certify” their particular characteristics such as:

1-the use of original, innovative, sustainable technics referring to 4.1C guide:

1.1-training systems and winter pruning systems such as: “Prosecco of Prosecco 4.1 C”, “Prosecco of Cartizze

4.1C”, “Prosecco-Latnik 4.1C”, which, among other things, allow not to be damaged by wild boar, roe deer, deer, birds, … and this without altering natural life;

1.2-management of the soil, of the grass, of the plant for example: 1.2.1-completely replacing chemical weeding with perennial grasses without mowing or mowing the grass, but only when and where objectively

“4.1C” this cannot be avoided, 1.2-2-eliminating or drastically reducing interventions on the ground and on the plant such as shoot positioning, topping and edging, for example in companies certified by known Italian certifications that do not include these aspects, 1.2.3-setting a phytosanitary defense applicable anywhere, also, in populated areas;

2-valuing and further personalizing the existing certifications, for example by certifying “GiESCO BIO -MetaEthics” insisting on the use of resistant varieties and the absence of copper residues in companies already certified “Organic”.

Obviously, the “Charter of Direct Sustainability BIO – MetaEthics” of the GiESCO fits the “Direct 4.1C Certification” and also the relative “Direct Guarantee 4.1C”: technical, economic, environmental, social, existential, ethical.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1, Alain CARBONNEAU2

1 Conegliano Campus 5.1C
2 Montpellier SupAgro, IHEV, Montpellier (France)

Contact the author

Keywords

sustainability 4.1CC, new direct certification 4.1CC

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Grapevine is one of the crops that may suffer more negative impacts
under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

Soil fertility and confered vigour by rootstocks

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown.

Adaptive winemaking technologies using PIWI varieties in the wine industry of Ukraine

In recent years, the impact of climate change has been pushing agriculture toward the implementation of innovative production methods aimed at countering the negative consequences of climate change.