GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

Abstract

Context and purpose of the study – High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.

Material and methods – In a study conducted during years 2013 and 2014 severe shoot trimming (65 cm shoot height) was performed at berry set (berries 2-4 mm in diameter), at the beginning of veraison (when <5% of berries had changed color), and at the end of veraison (when >80% of berries had changed color). These treatments were compared with a standard canopy treatment (125 cm shoot height). Another study was conducted during years 2015 and 2016, where standard canopy treatment (125 cm shoot height) and severe shoot trimming at the end of veraison (65 cm shoot height) were combined with two shoot densities per vine (obtained with 35% shoot thinning vs. untreated).

Results – Severe shoot trimming at all the three investigated stages reduced sugars in grapes, although this effect was the greatest in the two veraison treatments. Severe shoot trimming at berry set and at the beginning of veraison reduced also the concentration of total anthocyanins in grapes, while severe shoot trimming at the end of veraison obtained similar values of total anthocyanins to the standard canopy treatment. Photosynthetic active radiation in the cluster zone was greater in all treatments with severe shoot trimming because of greater light penetration from the upper part of the canopy. We hypothesize that greater light penetration around clusters in combination to the intensive accumulation of anthocyanins during the first weeks of berry ripening, enabled the treatment of severe shoot trimming at the end of veraison to obtain similar values of total anthocyanins to the standard canopy treatment. No effects on yield components, titratable acidity, pH and total phenolics in berries were observed in any of these treatments. In a study where standard and severe shoot trimming were combined with two shoot densities, a consistent effect on the reduction of grape sugar concentration was achieved only with late severe shoot trimming. Higher shoot density reduced sugars in grapes only in one season, while at the same time reduced the concentration of total anthocyanins in berries.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marijan BUBOLA1*, Sanja RADEKA1, Sara ROSSI1, Tomislav PLAVŠA1, Milan OPLANIĆ1, Ádám István HEGYI2, László LAKATOS2, Kálmán Zoltán VACZY2

1 Institute of Agriculture and Tourism, Karla Huguesa 8, HR-52440 Poreč, Croatia
2 Eszterházy Károly University, Food and Wine Research Institute, Leányka utca 6, H-3300 Eger, Hungary

Contact the author

Keywords

severe shoot trimming, shoot thinning, Brix, anthocyanins, phenolics

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress.

Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Stilbenes, a kind of non-flavonoid phenolic compounds, have been reported to be responsible for various beneficial effects. Their biological properties include antibacterial and antifungal effects, as well as cardioprotective, neuroprotective and anticancer actions (Guerrero et al. 2009).Several strategies can be used to increase stilbene content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.