terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

Abstract

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane. Chitin, the major component of fungal cell walls, is well known to elicit plant immune responses. In Vitis vinifera, knowledge about the perception and immune responses triggered by chitin oligomers is now better understood [1]. Among the LysM receptor-like kinases (LysM-RLKs) family of PRRs, which includes 16 members in Vitis vinifera, three of them (VvLYK1-1, VvLYK1-2 and VvLYK5-1) are involved in the perception of chitin oligomers to trigger plant immune responses [1,2]. Recently, another member of this family, named VvLYK6, was identified in grapevine as being overexpressed following a Botrytis cinerea infection. We characterized the role of VvLYK6 in plant immunity by overexpressing it in Arabidopsis thaliana and grapevine. Surprisingly, overexpression of VvLYK6 decreased chitin-induced MAPK activation, defense gene expression, callose deposition and increased plant sensitivity to fungal infections. According to these results, VvLYK6 negatively regulates chitin-induced defense reactions in grapevine and could be considered as a susceptibility gene in the context of fungal infections.

Acknowledgements: We acknowledge Institut Carnot Plant2Pro for funding the VitiLYKs project and DimaCell platform (Dijon, France) for the confocal microscopy.

References:
1) Roudaire T. et al. (2023) The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYL1-1. Front. Plant Sci. 14:1130782 DOI 10.3389/fpls.2023.1130782

2) Brulé D. et al. (2019) The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnol. J. 17, 812–825. DOI 10.1111/pbi.13017

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Villette J.1*, Marzari T.1, Roudaire T.1, Klinguer A.1, Leborgne-Castel N.1, Héloir M-C.1, Poinssot B.1

1Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.

Contact the author*

Keywords

grapevine, plant defense, LysM receptor-like kinase, defense inhibition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.